设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,则在(a,b)内至少存在一点c,使得[img=194x26]1802fa0d81239e1.png[/img]
举一反三
- 已知函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,试证:在(a,b)内至少有一点ζ,使得
- 设f(x)在[a,b]上连续,在(a,b)内可导(0<a<b),证明:在(a,b)内至少有一点c,使得2c[f(b)-f(a)]=fˊ(c)(b2-a2).
- 设ab>0,f(x)在[a,b]上连续,在(a,b)内可导,证明:存在ε∈(a,b),使得设f(x)在[a,b]上连续,在(a,b)设f(x)在[a,b]上连续,在(a,b)内连续可导,x。∈(a,b)是f(x)的唯一驻点.若f(x。)是极小值,证明:x∈(a,x。)时,fˊ(x)<0;x∈(x。,b)时,fˊ(x)>0
- 如果函数f(x)在区间[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ∈(a,b),使得f(b)-f(a)=______.
- 设f(x)在[a,b]上连续,在(a,b)内可导,且[img=77x26]1803d34f2cc952c.png[/img],若[img=64x25]1803d34f34e41ab.png[/img]则在(a,b)内f(x)( ) A: >0 B: <0 C: f(x)的符号不能确定 D: =0