设非常数函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]stG05jmmIfTHbIvq7S6Sdg==[/tex]上连续 ,在[tex=2.214x1.357]+smIHLjIglC7odyb4QS5dg==[/tex]内可导,[tex=4.286x1.357]EpQjgSEuzGk8AwZOaXQY7A==[/tex].证明在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex],使得[tex=3.929x1.429]aWJWVBG3St35JwVMiGniOiXPSOg7ONsZQpjXR57q+HI=[/tex].
举一反三
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导 [tex=5.214x1.357]GxgUuh9z1onPI5crcORAtg==[/tex] 证明:在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内存在一点 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex], 使得 [tex=9.5x2.429]niAtuUW6+h0Uvz2r65+6tRn/iqSWbT8eXxIUnVnzdbLcVUuxnA9eBzKN/ENSov1Q[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导, 且有 [tex=14.143x2.857]w860btLz1UC8W3Uga5vE2nuM2DliGvwpTXjs/fnxGy3ebSYOhg+GApL86m3JEMPogUvvmUQgiLLY31V08twhPu1Ojk0GUXt8PTgUvA6Ro4wUqgNQ0TRZP/i9KWickrlR[/tex]求证:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少有一点 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex],使得[tex=7.071x1.429]Xat13OcrnAmVJUgSxqIRyvM+ony9UavIkw0nCYFUsJ3dnpnZ7qUsOQMtH9tkRfQM[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,证明:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使[tex=11.429x2.5]WOqEVrpuCOha2ZBQjNNPrAVxQjjfA1h4tb1zjguDu2gGIMJX1FDyEvF1edf6o7UBVNxanJs2u11gkxisMYf5sA==[/tex].
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足罗尔定理的条件,且[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]不恒等于常数。证明:在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex],使[tex=3.929x1.429]aWJWVBG3St35JwVMiGniOv3CIhcqKJ5xaVCPhtFcBt8=[/tex]。
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在闭区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在开区间[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=4.071x1.429]yApvS3TPe/+BmYN+KyWzUQVaTMZ7m9ZcCA6zHprNVEw=[/tex].若极限[tex=6.0x2.5]ENxIatiC2yqgaopSQCG83ot0R/LK5k2mSjjE1cLKXi/qJocsT46+O8UmwFGxr2v74VVBDoaYerWM2UTeaco/kw==[/tex]存在,证明:(1)在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内,[tex=3.714x1.357]mXvJ+AdSx51b9k85jFWYgw==[/tex];(2)在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内存在一点[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex], 使[tex=7.643x3.071]DXr6FYxmXkcHa1uxiFlDRNwqMqhmUu5jPGZYAeybFzf4pK//IwJtUhuicFLCu2Qd6Tsfw6vkiZMqFeus+MXXz7irmUs+DS1U44Zb6272okU=[/tex];(3)在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内存在与(2)中[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]相异的点[tex=0.5x1.0]x1bygMLZjErpcp7AR7KkLQ==[/tex],使[tex=13.643x2.857]TCX+T7GT0X++9ypgx1BKL1gyTW1BNVSx8FITfGuS0ZoA6EyLq2CLjNZ8fzppmvxbUpqi2vez+3S35b6+0JzrzY7ReRKcl4unIEi9qVOkiAaXdHBg3V/qZYQSahSOKWXr[/tex]