估计[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]:科克伦奥克特迭代程序。作为对此程序的一个说明,考虑双变量模型:[tex=6.929x1.214]AE3m5A+tNZNXJrc+Fu4KdnlxYs9V4gArNBKBVlwLEucHH0ExVswTCW/aGCsYZaHP[/tex] (1)[br][/br]及[tex=1.571x1.0]8bU3aSlnZ+dqUsj3CTY5/A==[/tex](1)模式[tex=11.357x1.214]YICc9mhjfQIF13wdVs3alOlXnIy8bPDkGNyx+2iI5fKl4i99tI/8SccSH31QNIyu60h81W5L6PjjNvu+YBVFew==[/tex] (2)[br][/br]于是科克伦和奥克特推荐如下步骤来估计[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]。[br][/br]1.用通常的[tex=2.071x1.0]gK8iXL/QdPRlpuLJxLDDvw==[/tex]方法估计方程(1) 并得到残差[tex=0.857x1.214]djBDm8U9pq7vl0HVHAK/lQ==[/tex]顺便指出,你可以在模型中包含不止一个[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]变量。2.利用第1步得到的残差做如下回归:[br][/br][tex=5.5x1.214]O+PrZ7cDfxqJ9+xoqaP2UrnTSqFEuUIzPcZLKtJvzVBirNyRA4cukmtuA9tTbgpb[/tex] (3)[br][/br]这是方程(2)在实证中的对应表达式.3. 利用方程(3)中得到的 [tex=0.643x1.214]P6gYoyl65MNY35qC9a/IJg==[/tex], 估计广义差分方程(12.9.6)。[br][/br]4. 由于事先不知道方程(3)中得到的 [tex=0.643x1.214]P6gYoyl65MNY35qC9a/IJg==[/tex]是不是 $\rho$ 的最佳估计值, 所以把第 3 步中得到的 [tex=0.857x1.571]bcDweyJBh2HlrgIqBs3adTYzcarmOCVhEBBLN/5jNjU=[/tex]和 [tex=1.071x1.571]4Axz3DiPgazlp97kY3yYxcJLT0LxX+J90Re2Av16gUY=[/tex] 值代人原回归 (1), 并得到新的残差 [tex=0.929x1.357]aLe6mS4QCh58uwS0DC+cNg==[/tex]为[br][/br][tex=7.214x1.571]p7Ib3aZMpNrAuO+PUydVYPKHgqip6k0HIh2qJ6Ffx6fuWZHzoc4FNPC5kyl3FXtOzZj+7w/m+J6xHeII6QzNdw==[/tex] (4)[br][/br]由于[tex=0.857x1.214]QRLHoW2+aKLO1L7GJLM+Jw==[/tex], [tex=1.143x1.214]LnI4oL+T006vWk2WQP3QAA==[/tex], [tex=1.071x1.571]yXwWQo+f1wtlfbDj7iY3YstERmvx+EuwbEybRiDlQgw=[/tex]和 [tex=1.071x1.571]4Axz3DiPgazlp97kY3yYxcJLT0LxX+J90Re2Av16gUY=[/tex]皆已知, 故很容易计算出来。[br][/br]5.现在估计如下回归[tex=5.429x1.429]KjB8dwyu7v5EUj4SVIjWZO2N0zI9Ei34s5jCQ8F5wT94Lt3Qpo2Bz+6/Dg1bwm492Vr8h0PJDYBM3LXJh4/pTw==[/tex] (5)它类似于方程(3), 并给出[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的第二轮估计值。由于我们不知道[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的第二轮估计值是不是真实[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的最佳估计值,所以我们进入第三轮估计,如此等等。这正是科克伦~奧克特程序被称为迭代程序的原因。我们该把这种(愉快的)轮回操作进行到什么程度呢?一般的建议是,当[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的两个相邻估计值相差很小(比如不足0.01或0.005)时,便可停止迭代。在工资一生产率一例中,在停止之前约需要3次迭代。利用[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的最终估计值,在去掉第一次观测和保留第- -次观测的情况下, 估计工资一生产率回归。结果有何差异?
举一反三
- 估计[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]:科克伦奥克特迭代程序。作为对此程序的一个说明,考虑双变量模型:[tex=6.929x1.214]AE3m5A+tNZNXJrc+Fu4KdnlxYs9V4gArNBKBVlwLEucHH0ExVswTCW/aGCsYZaHP[/tex] (1)[br][/br]及[tex=1.571x1.0]8bU3aSlnZ+dqUsj3CTY5/A==[/tex](1)模式[tex=11.357x1.214]YICc9mhjfQIF13wdVs3alOlXnIy8bPDkGNyx+2iI5fKl4i99tI/8SccSH31QNIyu60h81W5L6PjjNvu+YBVFew==[/tex] (2)[br][/br]于是科克伦和奥克特推荐如下步骤来估计[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]。[br][/br]1.用通常的[tex=2.071x1.0]gK8iXL/QdPRlpuLJxLDDvw==[/tex]方法估计方程(1) 并得到残差[tex=0.857x1.214]djBDm8U9pq7vl0HVHAK/lQ==[/tex]顺便指出,你可以在模型中包含不止一个[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]变量。2.利用第1步得到的残差做如下回归:[br][/br][tex=5.5x1.214]O+PrZ7cDfxqJ9+xoqaP2UrnTSqFEuUIzPcZLKtJvzVBirNyRA4cukmtuA9tTbgpb[/tex] (3)[br][/br]这是方程(2)在实证中的对应表达式.3. 利用方程(3)中得到的 [tex=0.643x1.214]P6gYoyl65MNY35qC9a/IJg==[/tex], 估计广义差分方程(12.9.6)。[br][/br]4. 由于事先不知道方程(3)中得到的 [tex=0.643x1.214]P6gYoyl65MNY35qC9a/IJg==[/tex]是不是 $\rho$ 的最佳估计值, 所以把第 3 步中得到的 [tex=0.857x1.571]bcDweyJBh2HlrgIqBs3adTYzcarmOCVhEBBLN/5jNjU=[/tex]和 [tex=1.071x1.571]4Axz3DiPgazlp97kY3yYxcJLT0LxX+J90Re2Av16gUY=[/tex] 值代人原回归 (1), 并得到新的残差 [tex=0.929x1.357]aLe6mS4QCh58uwS0DC+cNg==[/tex]为[br][/br][tex=7.214x1.571]p7Ib3aZMpNrAuO+PUydVYPKHgqip6k0HIh2qJ6Ffx6fuWZHzoc4FNPC5kyl3FXtOzZj+7w/m+J6xHeII6QzNdw==[/tex] (4)[br][/br]由于[tex=0.857x1.214]QRLHoW2+aKLO1L7GJLM+Jw==[/tex], [tex=1.143x1.214]LnI4oL+T006vWk2WQP3QAA==[/tex], [tex=1.071x1.571]yXwWQo+f1wtlfbDj7iY3YstERmvx+EuwbEybRiDlQgw=[/tex]和 [tex=1.071x1.571]4Axz3DiPgazlp97kY3yYxcJLT0LxX+J90Re2Av16gUY=[/tex]皆已知, 故很容易计算出来。[br][/br]5.现在估计如下回归[tex=5.429x1.429]KjB8dwyu7v5EUj4SVIjWZO2N0zI9Ei34s5jCQ8F5wT94Lt3Qpo2Bz+6/Dg1bwm492Vr8h0PJDYBM3LXJh4/pTw==[/tex] (5)它类似于方程(3), 并给出[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的第二轮估计值。由于我们不知道[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的第二轮估计值是不是真实[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的最佳估计值,所以我们进入第三轮估计,如此等等。这正是科克伦~奧克特程序被称为迭代程序的原因。我们该把这种(愉快的)轮回操作进行到什么程度呢?一般的建议是,当[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的两个相邻估计值相差很小(比如不足0.01或0.005)时,便可停止迭代。在工资一生产率一例中,在停止之前约需要3次迭代。利用[tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]的最终估计值,在去掉第一次观测和保留第- -次观测的情况下, 估计工资一生产率回归。结果有何差异?
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 对素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的不同值, 找出循环群[tex=1.143x1.357]oOz0oH4UpFaaOY7OuGotcg8wtMntQEjCiVorwD1W3R4=[/tex]的所有生成元和所有子群.(1) 7 ; (2) 11 ; (3) 13(4) 17 ; (5) 19 ; (6) 23 .
- 以下数组定义中,错误的是( )。 A: int<br/>x[2][3] ={1, 2, 3, 4, 5, 6} ; B: int<br/>x[][3] ={0} ; C: int<br/>x[][3] ={{1, 2, 3} , {4, 5, 6} } ; D: int<br/>x[2][3] ={{1, 2} , {3, 4} , {5, 6} } ;
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。