【单选题】y=f(x)=sinx,x(t)=t 2 ,d 2 y=()。
A. (2cost 2 -4t 2 sint 2 )dt 2 B. (2cost 2 +4t 2 sint 2 )dt 2 C. (cost 2 -4t 2 sint 2 )dt 2 D. (cost 2 +4t 2 sint 2 )dt 2
A. (2cost 2 -4t 2 sint 2 )dt 2 B. (2cost 2 +4t 2 sint 2 )dt 2 C. (cost 2 -4t 2 sint 2 )dt 2 D. (cost 2 +4t 2 sint 2 )dt 2
举一反三
- (cost)^4*(sint)^2+(cost)^2*(sint)^4如何化简为(cost)^2*(sint)^2?麻烦告诉下,
- 设$z=x^2+xy+y^2$, $x=t^2$, $y=t$, 则$\frac{dz}{dt}=$ A: $2x+y+x+2y$ B: $t^4+t^3+t^2$ C: $4t^3+3t^2+2t$ D: $(2x+y)t^2+(x+2y)t$
- 若y(t)=f(t)*h(t),则f(2t)*h(2t)= A: y(2t)/4 B: y(2t)/2 C: y(4t)/4 D: y(4t)/2
- 以${{e}^{t}}$,$t{{e}^{t}}$为特解的二阶线性常系数齐次微分方程是 A: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-x=0$ B: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-2\frac{dx}{dt}+x=0$ C: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}+x=0$ D: $\frac{{{d}^{2}}x}{d{{t}^{2}}}-\frac{dx}{dt}=0$
- 已知空间曲线的参数方程为{x=a(cost)^2,y=a(sint)^2,z=asin2t(0