设()y()=()x()ln()x(),则()dy()=()A.()(1+ln()x())d()x()B.()(()x()+ln()x())d()x()C.()1/()x()d()x()D.()x()ln()x()d()x
举一反三
- 函数\(y = \ln \ln x\)的导数为( ). A: \({1 \over {x\ln x}}\) B: \( - {1 \over {x\ln x}}\) C: \({1 \over {\ln x}}\) D: \( - {1 \over {\ln x}}\)
- 函数\( y = {e^x} - 1 \)的反函数是( )。 A: \( y = \ln x + 1,x > 0 \) B: \( y = \ln (x + 1),x > - 1 \) C: \( y = \ln x - 1,x > 0 \) D: \( y = \ln (x - 1),x > 1 \)
- The integral of (1/x)dx is A: ln|x|+C B: ln(x) C: ln(-x) D: ln(-x)+C
- 设\(z = {e^ { { y \over x}}} + {x^y} + {y^x}\),则\({z_x} = \) A: \({1 \over x}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) B: \(- {y \over { { x^2}}}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) C: \({e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\) D: \( - {y \over { { x^2}}}{e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\)
- 设\(z = {\log _y}x\),求\({z_x}\)= A: \({1 \over {y\ln x}}\) B: \({1 \over {\ln x}}\) C: \({1 \over {x\ln y}}\) D: \({1 \over {ln y}}\)