关于利用Word2vec获取词向量,下列说法错误的是
Word2vec不需要利用语料进行训练
举一反三
- ( )不属于词向量。 A: one-hot B: word2vec C: Bag of word D: jieba
- 已知向量\(\vec {a},\vec {b}的夹角\theta=\frac{3\pi}{4},且|\vec{a}|=\sqrt{2},|\vec {b}|=\sqrt{3},求|\vec{a}-\vec{b}|=\)
- 考察球面$S:\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{a}^{2}}$,若规定内侧为正向,在其上任意一点的单位正法向量为( ). A: $\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ B: $-\frac{x\vec{i}+y\vec{j}+z\vec{k}}{a}$ C: $x\vec{i}+y\vec{j}+z\vec{k}$ D: $-\left( x\vec{i}+y\vec{j}+z\vec{k} \right)$
- 如果曲面$S$由参数方程给出:$x=u+v,\ y=uv,\ z=u-v$,则在任意一点的单位法向量为( ) A: $\pm \frac{(-u-v)\vec{i}+2\vec{j}+(u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ B: $\pm\frac{(u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k}}{\sqrt{2{{u}^{2}}+2{{v}^{2}}+4}}$ C: $\pm \left[ (-u-v)\vec{i}+2\vec{j}+(u+v)\vec{k} \right]$ D: $\pm \left[ (u+v)\vec{i}+2\vec{j}+(-u-v)\vec{k} \right]$
- 已知向量\(|\vec {a}|=13,|\vec{b}|=19,|\overrightarrow{a+b}|=24 ,则向量|\overrightarrow{a-b}|=\)
内容
- 0
已知`\vec\alpha _1,\vec\alpha _2,\vec\beta _1,\vec\beta _2`是4维列向量,设`\| alpha _1,alpha _2,alpha _3,beta | = a,| beta + gamma ,alpha _3,alpha _2,alpha _1| = b`,则`\| 2\gamma ,alpha _1,alpha _2,alpha _3 | = ` ( ) A: \[(a - b)\] B: \[2(a - b)\] C: \[(a + b)\] D: \[2(a + b)\]
- 1
下列关于向量的说法错误的是
- 2
关于向量空间,下列说法错误的是()
- 3
下列关于字句特点说法错误的是() A: 子句内是没有合取词的 B: 子句中可以有析取词 C: 子句通过合取词连接句子 D: 子句集为S和谓词公式F的可满足性是等价的
- 4
下列关于向量组的说法,错误的是( )