【简答题】请证明f(x)=sinx-xcosx,x∈(0,π/2)严格单调增。
举一反三
- 【单选题】5.设f 0 (x)=sinx,f 1 (x)=f 0 ′(x),f 2 (x)=f 1 ′(x),...,f n +1 (x)=f n ′(x),n∈N,则f 2011 (x)等于() A. sinx B. -sinx C. cosx D. -cosx
- 为了求y=xsinx的原函数F(x)满足条件F ’(x)=xsinx,先求得sinx的原函数-cosx,则 (-xcosx)’=xsinx-cosx. 由此得到 [F(x)+xcosx]’=xsinx-(xsinx-cosx)=cosx. 求cosx的原函数可得F(x)+xcosx 进而得到F(x)=? -xsinx-cosx+c|xcosx+sinx+c |-xcosx+sinx+c|-xcosx-sinx+c
- 下列变量在给定的变化过程中为无穷大量的是() A: xsin(1/x)(x→∞) B: (1/x)sinx(x→0) C: xcosx(x→∞) D: (1/x)cosx(x→0)
- f(x)=sinx,f'(0)=( )
- 设f(x)满足f(-sinx)+3f(sinx)=4sinx•cosx(|x|≤π2).