n阶一致阵的唯一非零特征根为______.
举一反三
- A是n阶一致阵,A的秩为1,A的唯一非零特征根为n
- 设\( A \)为\( n \)阶方阵,\( {A^2} = I \),则( )。 A: \( |A| = 1 \) B: \( A \)的特征根都是1 C: 秩\( R(A) = n \) D: \( A \)一定是对称阵
- 证明 8.1 节层次分析模型中定义的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶一致阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有下列性质 :[tex=0.643x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为[tex=0.5x1.0]AYXQx0BMtpSPsr4BfOe2YQ==[/tex],唯一非零特征根为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex];
- 若A是n阶非奇异阵,则必存在单位下三角阵L和上三角阵U,使A=LU唯一成立。
- 下列哪一项不是n阶一致阵的性质