设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是主理想整环, 则[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任一非零素理想均为极大理想.
举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为整环. 若[tex=1.286x1.357]TP6DNPZ0BXz9dGahH6oH3todNWR8QzFOwyHNRRUu2eE=[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的非零极大理想, 则[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为不可约元.
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为整环, 则[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为素元当且仅当[tex=1.286x1.357]TP6DNPZ0BXz9dGahH6oH3todNWR8QzFOwyHNRRUu2eE=[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的非零素理想.
- 证明(1) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任意有限多个理想的和还是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想 (2) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的任意 ( 有限或无限) 多个理想的交还是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.
- 设[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想. 求证[tex=1.714x1.357]c0J1qGACk0Sr2NjEGUGvmg==[/tex]中素理想均可写成形式[tex=1.643x1.357]wpe9jfikO+e4oEWowiUmDw==[/tex], 其中[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中素理想而且包含[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]. 将素理想改成极大理想则此论断也成立.
- 设[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是交换环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中的理想, 求证集合[tex=15.929x1.286]x1n1yoXwvapsKx5EdV+pZfepyJxGrnlRGZn5VJJE3eA7ay6nv77Fo7YoCa5wTVi2SNJjJsw27jPyW7aiIeaTopq9BlO+UMTHGDWIZfNjHRr6wlshzmlapvqJxD2xIxo4[/tex]也是环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想.