交换积分次序∫20dx∫ex1f(x,y)dy=∫e21dy∫2lnyf(x,y)dx∫e21dy∫2lnyf(x,y)dx.
举一反三
- 形如( )的方程,称为可分离变量方程,这里\(f(x), g(y)\)分别为\(x, y\)的连续函数。 A: \(\frac{dy}{dx}=f(x)g(y)\) B: \(\frac{dy}{dx}=f(x)\) C: \(\frac{dy}{dx}=f(x)+g(y)\) D: \(\frac{dy}{dx}=\frac{f(x)}{g(y)}\)
- 交换积分次序∫21dy∫2yf(x,y)dx=∫21dx∫x1f(x,y)dy∫21dx∫x1f(x,y)dy.
- 下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)
- 设随机变量X,Y不相关,且EX=2,EY=1,DX=3,DY=1,则E[X(X-Y-2)]=( )