举一反三
- 空间中同一点上有两个矢量, 取圆柱坐标系, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的单位矢量
- 设事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 互不相容, 且 [tex=8.786x1.357]1A7WHGcU5mWBGzLoAYLD+KtEa2iCYBKvWlFt0IZxoOI=[/tex] ,求以下事件的概率:(1) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 中至少有一个发生;(2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都发生;(3) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生但 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 不发生.
- 设两个相互独立的事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都不发生的概率为 1 / 9, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 不发生的概率与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不发生的概率相等,则 [tex=3.0x1.357]PlWNHdSuVTfacbkTVT1WGw==[/tex][input=type:blank,size:6][/input].
- 在某城市中发行三种报纸 [tex=4.286x1.286]bbjSq6zDezEVkpU1l4EZhg==[/tex] 经调查,订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 报的有 45%,订阅 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 报的有 35%,订阅 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 报的有 30%,同时订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 及 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 报的有 10%,同时订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 及 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 报的有 8%,同时订阅 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 及 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 报的有 5%,同时订阅 [tex=4.286x1.286]bbjSq6zDezEVkpU1l4EZhg==[/tex] 报的有 3%. 试求下列事件的概率(1)只订 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 报;(2)只订 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 及 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 报;(3)只订一种报纸;(4)正好订两种报纸.
- 两个信号 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 传输到接收站已知[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 错收为[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的概率为 0.02,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 错收为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的概率为0.01而 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发射的机会是[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的2倍,求:(1) 收到信号 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的概率(2) 收到信号 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的概率(3) 收到信号[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 而发射的是信号[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的概率
内容
- 0
进行 4 次重复独立试验,每次试验中事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生的概率为 0.3 . 如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不发生,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也不发生;如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生 1 次,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生的概率为 0.4 ; 如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发 生 2 次,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生的概率为 0.6 ; 如果事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生 2 次以上,则事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 一定发生. 求事件 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 发生的概率.
- 1
设有集合[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex],(1)若[tex=3.857x1.143]Q5ZavoZvOi0DoyJTzmDshQ==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有什么关系?(2)若[tex=5.357x1.143]nBU3hKCBKUYp1JXsoeMeCA==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有什么关系?
- 2
某城市中共发行 3 种报纸 [tex=2.786x1.214]JWNKNzBOPsaefS7eUHnH3A==[/tex], 在这城市的居民中有 45% 订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 报、35% 订阅 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 报、25% 订阅 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 报, 10% 同时订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 报 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 报、8%同时订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 报 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 报、5% 同时订阅 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 报 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 报、3% 同时订阅 [tex=3.143x1.214]AzD8UYoy+kTlHC4wZn4aJg==[/tex] 报. 求 以下事件的概率:(1)只订阅 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 报;(2)只订阅一种报纸的;(3)至少订阅一种报纸的;(4)不订阅任何一种报纸的.
- 3
设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 是任意两事件,其中 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的概率不等于 0 和 1, 证明[p=align:center][tex=8.357x1.429]GJ5i+vQarUlGc9dBEHINxezc5NVjbiDYM3wHRtLave8=[/tex]是事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 独立的充分必要条件.
- 4
(1)火箭[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]以[tex=1.714x1.0]+kcG+chBeV/DysB2YxMzfA==[/tex]的速率相对于地球向东飞行,火箭[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]以[tex=1.714x1.0]JPxsqrFKbBlTH7pYiabWnA==[/tex]的速率相对地球向西飞行,求火箭[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]测得火箭[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的速率的大小和方向。(2)如果火箭[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]向正北飞行,火箭[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]仍然向西飞行,则由火箭[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]测得火箭[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的速率大小中方向又如何?