试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上的非负绝对连续函数.则 [tex=5.5x1.357]13jHbZrdKjDu7Wd6dHAesA==[/tex]是[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex]上的绝对连续函数.
举一反三
- 试证明下列命题:设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex]上的有界函数,其不连续点集记为[tex=0.857x1.0]SgBD8u1wdBgpRP8N7rG5Xg==[/tex]. 若 [tex=0.857x1.0]SgBD8u1wdBgpRP8N7rG5Xg==[/tex]只 有可列个极限点,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上的 Riemann 可积函数.
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上是处处可微的,且 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 是 [tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上 的 可 积函数,则 [tex=10.071x2.857]v8dYDmjeifbMxF1xMKtGGHWsDx+1iOcafFQjAA6BoH1zDCgj25twkw4g4zp+4jml[/tex].[br][/br]
- 试证明下列命题:设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的绝对连续函数, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上满足Lipschitz 条件. 则[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的绝对连续函数.
- 设 [tex=5.857x1.357]gfTyftYv3vx5MA+ZCm0ioTLxy7oVEpeq/Rn9ytEwYJE=[/tex] 证明:若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒不为零,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上恒正(或恒负)。
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的有界变差且连续的函数. 若对 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 中任一零测集 [tex=0.714x1.0]YEZ006Hwni4CHfhiGo7PZQ==[/tex],有 [tex=4.929x1.357]j3E5K1XnovebABusxSu2QQ==[/tex] (简称为[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]具有零测性,或称 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 具有性质[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] ),则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的绝对连续函数.