试证明下列命题:设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的绝对连续函数, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上满足Lipschitz 条件. 则[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的绝对连续函数.
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上恒为常数的充要条件是:对于任何 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的连续函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 且 [tex=6.0x2.857]yINAHOXKHG7ruMsL/vkvBEYj6HewtfoBmgOlOkEMcJy2RxHEgnyJ8vpzCdsSLoLZ[/tex], 总有[tex=8.143x2.857]7gcaGQKU+5R98xRnVkbRSL4g1A5RDN/b3vHA6tm2w1heBr45R4BeYC3/TzlbrSns[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上一有限函数,那么下列两件事等价:(1)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上满足 Lipschitz 条件,(2)[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上某个有界可积函数的不定积分.
- 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上有界.
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在闭区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可微分.若有[tex=15.286x1.429]w6PVZnaDpV6OaJNAIufU/EP72TSbtHUhUz3G8wlhoSJsnDJY5w2KW+OV5pMFmANpOBZQCiaWdWSXdWajFQZ4nQJlvKNW65f/vV59CfSLqxU=[/tex]证明:[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在闭区间[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的两个零点之间必有[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的零点.
- 函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续是在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上可导的