圆柱形电容器 由一根长直导线和套在它外面的共轴导体圆筒构成. 设导线的 半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex], 圆筒的内半径为 [tex=0.714x1.0]evidHnx2J/A8hhKWrYeJ4A==[/tex]证明: 这电容器所存储的能量有一半是在半径为 [tex=4.071x1.571]RU3YRnSADgWK1I57wAwMRypWIj0I9HoRT9GMLoOA4lk=[/tex]的圆柱体内.
举一反三
- 圆柱电容器由一长直导线和套在它外面的共轴导体圆筒构成。设导线的半径为 [tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex], 圆筒的内半径为 [tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]. 证明: 这电容器所储藏的能量有一半是在半径 [tex=3.571x1.286]mAPD2Um4CFNLWgY52lg38A8rhFYg6q518iza8Bvcf9A=[/tex] 的圆柱体内。
- 圆柱电容器是由半径为[tex=1.143x1.214]WB5oUFU97imVoOqmwwnMtg==[/tex]的直导线和与它同轴的导体圆筒构成,圆筒内 半径为 [tex=1.143x1.214]akFdfHl3PdcRxRUQleHWdA==[/tex], 长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex], 其间充满了介电常量为 [tex=0.5x0.786]ux0J/jSeHg2jOmBitEwINg==[/tex] 的介质. 设沿轴线单位长度上,导线带 电量为[tex=1.214x1.214]WbhE45iERlg4dPMpEloudA==[/tex] 圆筒带电量为[tex=1.714x1.214]/a9yzaD98dWzp1ffr/XlUw==[/tex]. 略去边缘效应,求: 电容[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]
- 圆扑形电容器是由半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的导线和与它同轴的导体圆筒构成,圆筒内半径为[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex], 长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex], 其间充满了两层同轴圆筒形的均匀介质,分界 面的半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 介电常数分别为 [tex=0.857x1.0]M77Im89n9ijU205Hut5rnvEUaQ2canqgubXzIeNpYcQ=[/tex]和 [tex=0.857x1.0]i23dSc38fu+adAJ73eKBw9RbYF87GCT+Qb7rzevEh1A=[/tex](见附图 ), 略去边缘效应, 求电容[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]。[img=475x203]17a803005b32b12.png[/img]
- 一同轴线由无限长直导线和套在它外面的同轴圆筒构成,导线的半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],圆筒的内半径为[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex],外半径为[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex],电流[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]由圆筒流去,由导线流回.在它们的横截面上,电流都是均匀分布的.试求导线内、导线和圆筒之间、圆筒内及圆筒外每单位长度内的磁能密度.
- [img=319x159]17a90a8795c5210.png[/img]一电容器由两个同轴圆筒组成,内筒半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],外筒半径为[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],长都是[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex],中间充满相对电容率为[tex=0.786x1.0]UGTb3mBG6stcsgF+b5KCcN3tGbJwtAkNMdlfEq83jrg=[/tex]的各向同性均匀电介质。内、外筒分别带有等量异号电荷[tex=1.571x1.214]BCXosjoI6djUTdHR0MD+MQ==[/tex]和[tex=1.571x1.214]zQhd8FJJNy1onswjEodGWw==[/tex],设[tex=8.929x1.214]CGqWVeBCG9JutwV+tSUgmVQVfGgcG0sSJz8ZQX7oOvk=[/tex],忽略边缘效应,求: (1)圆柱形电容器的电容;(2)电容器储存的能量。