举例说明当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为拓扑空间,[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]为满足第一或第二可数性公理的空间时,映射空间[tex=1.429x1.214]lx1EVEoaliACZj5tTCXYcQ==[/tex](紧致收敛的拓扑)可以不具有同一性质。
举一反三
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]都是可数紧致空间。证明:积空间[tex=2.857x1.143]OBJvJRkGmR50oaHqcerUhA==[/tex]也是一个可数紧致空间。
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]是两个拓扑空间,[tex=3.929x1.214]QMdjVDLE7+KCtqQUHHExMuOahKiPzLRrtzSIbjGFDt4=[/tex]是一个连续映射。证明:如果[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是一个可分空间。则[tex=2.143x1.357]xJaoe4pZjHAOnCWvdJIScg==[/tex]也是可分的。(这说明可分性是一个连续映射所保持的性质,并且由此可见,它是一个拓扑不 变性质,可商性质。)
- 拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为伪紧致的,如果对于任一连续映射[tex=6.571x1.357]QqFixYebT/bIENpOaCF+iOYIFpzQxTFHxwm4zQkZZEWoNPZ8j+8FX5pr7UM9yN0N[/tex]都是有界的。证明:度量空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致的当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是伪紧致的。
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]都是列紧空间。积空间[tex=2.857x1.143]o+gQvBuSt0uGsrjoYIWUug==[/tex]一定是列紧空间吗?给出你的结论并证明或举出反例。
- 补足定理1、2、3中关于第一可数性公理情形的证明。定理1:设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个拓扑空间,[tex=3.929x1.214]QqFixYebT/bIENpOaCF+iMot2th5ZD+6WQyP0q2fuQQ=[/tex]是一个满的连续开映射。如果[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]满足第二可数性公理(满足第一可数性公理),则[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]也满足第二可数性公理(满足第一可数性公理)。定理2:满足第二可数性公理(满足第一可数性公理)的空间的任何一个子空间是满足第二可数性公理(满足第一可数性公理)的空间。定理3:设[tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个满足第二可数性公理(满足第一可数性公理)的空间,则积空间[tex=8.571x1.214]CkbBcgJrLNIwZHLDinyMQc2rREpGyL63UH9eLssnxMZ41jEsuFjVGRlxIHLZ5+Kx[/tex]沛满足第二可数性公理(满足第一可数性公理)。