2. 设级数$\sum\limits_{n=0}^{\infty }{{{b}_{n}}}{{\left( x-2 \right)}^{n}}$在$x=-2$处收敛,则此级数在$x=4$处()
A: 发散
B: 绝对收敛
C: 条件收敛
D: 不能确定敛散性
A: 发散
B: 绝对收敛
C: 条件收敛
D: 不能确定敛散性
举一反三
- 若\(\sum\limits_{n = 1}^\infty { { a_n}} {(x - 1)^n}\)在\(x = - 2\)处收敛,则此级数在\(x=-1\)处( )。 A: 条件收敛 B: 绝对收敛 C: 发散 D: 敛散性不确定
- 若幂级数$\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}}$在$x=2$处收敛,在$x=-3$处发散,则该级数 A: 在$x=3$处发散 B: 在$x=-2$处收敛 C: 收敛区间为$(-3,2]$ D: 当$\left| x \right|\gt 3$时发散
- 若幂级数∞n=1an(x-1)n在x=-1处收敛,则该级数在点x=2处()。 A: 条件收敛 B: 绝对收敛 C: 发散 D: 敛散性不能确定
- 设级数$\sum\limits_{n=1}^\infty u_n$ 收敛,则下列级数收敛的是() A: $\sum\limits_{n=1}^\infty \left(u_n+1\right)$ B: $\sum\limits_{n=1}^\infty u_{2n}$ C: $\sum\limits_{n=1}^\infty u_{n+1}$ D: $\sum\limits_{n=1}^\infty u_{2n+1}$
- 若幂级数\(\sum\limits_{n = 1}^\infty { { a_n}} {x^n}\)在\(x = {x_0}\)处发散,则该级数的收敛半径满足( )。 A: \(R = \left| { { x_0}} \right|\) B: \(R < \left| { { x_0}} \right|\) C: \(R > \left| { { x_0}} \right|\) D: \(R \le \left| { { x_0}} \right|\)