下列方程中是线性微分方程的是( )。
A: \( \cos \left( {y'} \right) + {e^y} = x \)
B: \( xy'' + 2y' - {x^2}y = {e^x} \)
C: \( {\left( {y'} \right)^2} + 5y = 0 \)
D: \( y'' + \sin y = 8x \)
A: \( \cos \left( {y'} \right) + {e^y} = x \)
B: \( xy'' + 2y' - {x^2}y = {e^x} \)
C: \( {\left( {y'} \right)^2} + 5y = 0 \)
D: \( y'' + \sin y = 8x \)
举一反三
- 下列方程中,不是全微分方程的为( )。 A: \(\left( {3{x^2} + 6x{y^2}} \right)dx + \left( {6{x^2}y + 4{y^2}} \right)dy = 0\) B: \({e^y}dx + \left( {x \cdot {e^y} - 2y} \right)dy = 0\) C: \(y\left( {x - 2y} \right)dx - {x^2}dy = 0\) D: \(\left( { { x^2} - y} \right)dx - xdy = 0\)
- 设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
- 下列函数中( )不是方程\( y' + xy = 0 \)的解。 A: \( y = {e^{ - { { {x^2}} \over 2}}} \) B: \( \ln \left| y \right| = - { { {x^2}} \over 2} \) C: \( y = {e^{ - { { {x^2}} \over 2}}} + 2 \) D: \( \ln \left| y \right| = - { { {x^2}} \over 2} +2\)
- 下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)
- 设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( ) A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\) C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)