• 2022-06-06
    下列方程中是线性微分方程的是( )。
    A: \( \cos \left( {y'} \right) + {e^y} = x \)
    B: \( xy'' + 2y' - {x^2}y = {e^x} \)
    C: \( {\left( {y'} \right)^2} + 5y = 0 \)
    D: \( y'' + \sin y = 8x \)
  • B

    举一反三

    内容

    • 0

      设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)

    • 1

      方程\(\left( {1 - {x^2}} \right)y - xy' = 0\)的通解是( )。 A: \(y = C\sqrt {1 - {x^2}} \) B: \(y = - {1 \over 2}{x^3} + Cx\) C: \(y = {C \over {\sqrt {1 - {x^2}} }}\) D: \(y = Cx{e^{ - {1 \over 2}{x^2}}}\)

    • 2

      下列方程中( )是微分方程。 A: \( x{y^3} + 2{y^2} + {x^2}y = 0 \) B: \( {y^2} + xy - y = 0 \) C: \( x + {y^2} = 0 \) D: \( dy + ydx = 0 \)

    • 3

      下列微分方程是线性微分方程的是()。 A: x(y’)<sup>2</sup>+y=e<sup>x</sup> B: xy"+xy’+y=cosx C: y<sup>3</sup>y"+y’+2y=0 D: y"+2y"+y<sup>2</sup>=0

    • 4

      \(\left\{ {\left( {x,y} \right)\left| {2 \le {x^2} + {y^2} \le 4} \right.} \right\}\)是闭区域.