对于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶简单图[tex=0.786x1.0]pTUc1JkHMaUnBO95HIW13w==[/tex],若其边数为[tex=0.929x0.786]yAX8sASogaqshDsb011p1g==[/tex],试计算[tex=0.786x1.0]pTUc1JkHMaUnBO95HIW13w==[/tex]的补图[tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex]的边数。
举一反三
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]与它的补图[tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex] 的边数分别为 [tex=1.286x1.0]fAfL1gz2FNNAp5ncosS6cA==[/tex] 和[tex=1.286x1.0]4LVsS7aUVlr169bVzOxOnw==[/tex], 试确定 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的阶数 [tex=0.929x0.786]lxK7J2TkjjIzWdTjZIk12Q==[/tex]
- 求 8 阶自对偶图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 和面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex].
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶无向简单图, [tex=2.5x1.143]WHvOziYYJdz0BFGLmQB/8g==[/tex]且为奇数,证明 : [tex=0.786x1.0]AE39d9jt5lmaK/QknwwnQQ==[/tex] 与 [tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex]中奇度顶点的个数相等.
- 设图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中各结点的度都是 3 ,且结点数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 与边数[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]间有如下关系[tex=4.071x1.143]dsBX0CJSA7k9lmQfrYT43w==[/tex]问(1) [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中结点数与边数各为多少 ?(2) 在同构的意义下[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是唯一的吗?
- 已知无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中顶点数 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]与边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 相等, 2 度与 3 度顶点各 2 个,其余顶点均为悬挂顶 点,试求 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex].