举一反三
- 随机变量[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex]分别以概率0.4、[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]和[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]取值1、2、3、4,并且[tex=3.071x1.286]fknOBgzbjEu52cPH0WBW3g==[/tex],[tex=3.071x1.286]UAJJxdfCoB8SKuppr0cT/w==[/tex].求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]。
- 如果正数[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]满足[tex=6.143x1.286]ZmgY4IYKNAnTxjSaOa1RjQ==[/tex],那么 未知类型:{'options': ['[tex=4.429x1.286]LJI1FiqfFfvLk57V4PrnIg==[/tex],且等号成立时[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]的取值唯一', '[tex=4.429x1.286]TX9Qz0sE7bWEvnntsBl/HA==[/tex],且等号成立时[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]的取值唯一', '[tex=4.429x1.286]LJI1FiqfFfvLk57V4PrnIg==[/tex],且等号成立时[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]的取值不唯一', '[tex=4.429x1.286]TX9Qz0sE7bWEvnntsBl/HA==[/tex],且等号成立时[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex],[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]的取值不唯一', '以上均不正确'], 'type': 102}
- 已知:直线[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]、[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]是两两相交且不过同一点的四条直线,求证:直线[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]、[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]、[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]、[tex=0.571x1.286]E8TCNnEPtMKJ0mC2xxh0/Q==[/tex]共面。
- 已知向量[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]满足[tex=5.5x1.286]XBzGtIEZUjabuA8/EfuCKA==[/tex],证明:[tex=8.857x1.286]TP7/vkvKTaS3CcrLZkxwyOAtrbYWag3hfgRq5MPkYHFqGl8em4+5j+nWWk9VAPT0[/tex]。
- 设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]均为非零向量,其中任意两个向量不共线,但[tex=2.143x1.286]qLNNO+23HhP0x/qA8heyug==[/tex]与[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]共线,[tex=2.071x1.286]xEbeH7uQMUq3Kx9L+vZ5gw==[/tex]与[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]共线,试证:[tex=5.5x1.286]XBzGtIEZUjabuA8/EfuCKA==[/tex]。
内容
- 0
设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]均为非零向量,其中任意两个向量不共线,但[tex=2.143x1.286]qLNNO+23HhP0x/qA8heyug==[/tex]与[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]共线,[tex=2.071x1.286]zZiLwfIlJTHaGqt1S6VNuQ==[/tex]与[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]共线,试证[tex=5.5x1.286]XBzGtIEZUjabuA8/EfuCKA==[/tex]。
- 1
向量[tex=5.643x1.286]UOUVlYY3Owd/9Y+4aGhD2Q==[/tex]在[tex=4.786x1.286]x/DRKltwGOjd6FFY9joZ6Q==[/tex]上的投影[tex=3.214x1.286]HwD6aHO6Qt0l6J++EPGgPBkdil9ILD3xu4YblbhvSoE=[/tex][input=type:blank,size:6][/input] ,[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]在[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]上的投影[tex=3.143x1.286]HwD6aHO6Qt0l6J++EPGgPJ4STKvTqeKlzMVUIz66NNQ=[/tex][input=type:blank,size:6][/input] .
- 2
已知向量[tex=5.857x1.286]At676y/Xw+dGpU+zwbIjuladEmKzMtxWa7Rn74Bed3U=[/tex],[tex=6.5x1.286]wNbMwIpklPDuS9x4wgbFzpefoqcLOIYVeg4tAdFY9uQ=[/tex],向量[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]在向量[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]与向量[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]的角平分线上,且[tex=4.571x1.286]BOfdsd3AdRSrFUPGgx9e+GJ8qrHCNHVpyUNOKi2BlCE=[/tex],求[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]的坐标。
- 3
设[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]是有理数,满足[tex=9.214x2.929]wLLnuhaTkejykG34Lose4Gk3bDdglgIOUPyksgtxtXmt1sHAbktViJ8p1ePynplK3+wsNPKnCMhi2L94ONh39NTRjZdrdBEvRo1TQVd9L2o=[/tex],求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex]的值。
- 4
设曲线[tex=4.571x1.429]nvmx10kUNAIyP8+dFGOuLg==[/tex]和[tex=4.357x1.429]5+CFrn8UbvOcMTzU45s3GQ==[/tex]在点[tex=3.0x1.357]IuS+jpCX4WU7+Z7SztoPdg==[/tex]相切,求[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex],[tex=0.5x1.286]PGyKeLDo0qv9T0n29ldi6w==[/tex],[tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex]。