设a、b、o都是向量,若ab=0,则a=o或b=o
举一反三
- 设A与B均为n阶矩阵,则下列结论中正确的是 A: 若|AB|=0,则A=O或B=O B: 若|AB|=0,则|A|=0或|B|=0 C: 若AB=O,则A=O或B=O D: 若ABO,则AO或BO
- (2.2矩阵的运算)下列命题一定成立的是() A: 若 |A|¹0,则A¹O B: 若A¹O,则 |A|¹0 C: 若AB=O,则A=O或B=O D: 若AB=AC,则B=C
- 设A和B均为n阶方阵,且AB=O,则必有 。 A: A=O或B=O B: A≠O,则B=O C: |A|=0或|B|=0. D: |A|+|B|=0
- 设A,B是n阶方阵,满足AB=O,则必有 ( ) A: A=O或B=O B: A+B=O C: |A|=0或|B|=0 D: |A|+|B|=0
- 设A,B均为n阶方阵,则() A: 若|A+AB|=0,则|A|=0或|E+B|=0 B: (A+B)^2=A^2+2AB+B^2 C: 当AB=O时,有A=O或B=O D: (AB)^-1=B^-1A^-1