• 2022-06-11
    设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]分别是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上[tex=2.714x1.071]319e/AVA5VexfWBQXpJ9ug==[/tex]矩阵和[tex=2.143x1.143]imWXwrUZZtl+jqNAzY036g==[/tex]矩阵,用[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]表示[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的列空间,用[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]表示[tex=3.5x1.286]2Sm+KOxKwLaMMITFpfNisQ==[/tex]的解空间,证明:[tex=14.786x2.786]lBXXZYMMrxJ2+/5vAU9EvRhAIdAo8+b5PM4b6/pfEuJUSgFtBA3DWtZwlC3ZkGic+pUd2oPO7DQ/ps0mlIR/u1aPOKetQ6PB2RDz/KDbbWuhKvPHu1jSM3Dar4ajLjsZzWR6Cii+cMMgAGEHVIiQB1KhOwO8oPwrNEBZizFY45Ac0UsbA/pRrjrfBXRX42+Z[/tex]。
  • 证明:[tex=14.071x1.357]lBXXZYMMrxJ2+/5vAU9EvRhAIdAo8+b5PM4b6/pfEuI1wPhkw5pABwiAagle+RX5X9mOTlOadIKmt4otMzRUccluAvHCRkVowEXM0HJhzhuDXA3TbP15K/JHYOk9occnyWREMRlb4WfwnfTFebFkOA==[/tex][tex=11.143x1.357]a8VjQUSBsTsf1BnikLBdXIFoAa3nl84cyNiKke0W65u6CuFpCoXlarEz3021XFXixe9hgtU443F3SKBKOA3tsvGnxfUijO/WZ5nQaNlNxBI=[/tex]。[tex=9.929x1.357]qulE2au0sCsC2RUF6/a3J3hO6CzRT2sYJUh3g6XgRQdqrAuE3uhasyKf2F37w6ZpyKj/U8pIqDoEdVkCrqNgVS6mRciKcV19Nj8AC14OORfs1K4KG8UNJ6SGoXyRw1uykE8DtWHmRzvz3Zkhsjjlqg==[/tex],[tex=3.929x1.071]jakS20uaXrJZK6aSyAuqihdD666VlNPY66Trn8/DCtk=[/tex];[tex=5.0x1.0]y8LuSm71q2LpxnLwWvR1bxJUWS9S7PZ/PZkLaw7vaRcyES8Cy/HMjvkJQREX7t/y[/tex],[tex=3.857x1.0]Tqjnt4YBesBUnXamgp1+/bbe25HUskhBU/ReGZLbm/M=[/tex];[tex=7.714x2.786]y8LuSm71q2LpxnLwWvR1bzdro89VCyWEldqap4kA4q4MgBe60fIXYY8ueEUCqlkvwp/fGOLNIjkkRyPG0tOLbdvrV+FpMLNSNcB00s0SJQTZ8sALIt8v27h0LYcB8H5+[/tex]。于是[tex=12.714x2.786]lBXXZYMMrxJ2+/5vAU9EvYDyZ77Mlt1d/ONYOnw7y6Rmtn8uE8AkvsfFOqd2iu7OyYc0/wmkui5mSFsefsZRt0QqTDKr10xauIwPNDUd8Z4JztgcEk2H1kzSI/51KEgDUkkZG0uEBm7j65sIF5TQyQ==[/tex],从而[tex=18.286x2.786]lBXXZYMMrxJ2+/5vAU9EveOckQK2DBRCjwk3ov4OxFgjEJj7Vj2LgU9v15ceTqz8fyPKkInQUl0Vaf5dUb/kBzRaueqGoismo7CsXAlVZA5UBK2JxXdFV9gC8W6vcZ09urldWDpt6YjgE0a3tdEw4iHADoRy+OWCg60Lc/RFf3ou4ZJdXe4EXgi+QDSak8hh[/tex][tex=10.357x2.786]QCnSjjZlkUmH/xR95KInduvU/jH7xSFcTcirM3EqtIV5M2gyKRsqA8aui0uBH7RcUGSxbWGnxfBTBKCnCyhQQqoAEsF4pc3CFpa6i8dpH3joeUPxrj61yl6eFKdyIsaJ[/tex]。

    举一反三

    内容

    • 0

      (单项选择)在下面的支付矩阵(表10-1)中,第一个数表示[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的支付水平,第二个数表示[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的支付水平,[tex=2.786x1.214]Alvty5eRAguf/BAip0SU2g==[/tex]是正的常数。如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]选择“下”而[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]选择“右”,那么:[img=966x165]17b260e76ac06cc.png[/img](1)[tex=2.286x1.071]/1mY4Ps0DpW+Qvb9So7bLA==[/tex]且[tex=2.357x1.071]wQTM8GfGiwurNccE25vM/Q==[/tex](2)[tex=5.357x1.286]y8oGMJdKRfg12wyMvAGf9A==[/tex](3)[tex=5.429x1.286]khChX+rq3BeylPDdjzuSnQ==[/tex](4)[tex=5.357x1.286]v0fKmKzcydIRmeI+Yl/U9A==[/tex](5)[tex=5.571x1.286]+Y6nDGhleH41PXLDAZbrOA==[/tex]

    • 1

      下列函数是哪些函数复合而成的?(1)[tex=4.214x1.286]6PuLCl/TwscTl61WSePGog==[/tex];(2)[tex=5.214x1.286]+mZ2Cm2OprRKGTGg0iqmyZx+4lZ796PxrSQNx30R9UU=[/tex];(3)[tex=4.214x1.357]jTbrMH55vzOFOJlLSnfh103OHFmRhIjXZGzPnfweOX0=[/tex];(4)[tex=6.071x1.286]W2A0mViHY0pK74wEByr6ED5K+AKV/pxHaeQdYGQBxwc=[/tex];(5)[tex=6.714x1.429]8up/G1s+GteD9ejcGkFVmYl3TTtTik5kuwrPDCv0JkbGIWyY33cnaw7XtBiPcSnh[/tex];(6)[tex=5.714x1.286]APaFs2rWyubdkzLcUVVxVJSSAsLEOtXn4KjnToE2BQA=[/tex];

    • 2

       对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7;           (2) 8;               (3)10 ;(4) 14 ;         (5) 15             (6) 18 。

    • 3

      [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是(  )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}

    • 4

      已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]