证明定义在勒贝格测度为零的集上的函数 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是可测函数.
举一反三
- 证明可测集 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上的常值函数 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是可测函数.
- 证明可测集 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 上的连续函数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是可测函数.
- (1) 叙述无界函数的定义;[br][/br](2) 证明:[tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为[tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上的无界函数;[br][/br](3) 举出函数 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的例子,使[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为闭区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的无界函数。
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为定义在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上以[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]为周期的函数,[tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex] 为实数.。证明 : 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在 [tex=3.429x1.357]yn+eS8j3jL70HAQbcELryg==[/tex]上有界,则[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上有界。
- 证明: 双线性函数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 具有正交对称性的充分必要条件是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为对称或反称双线性函数.