写出由下列条件确定的曲线所满足的微分方程:曲线上点[tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的法线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴的交点为[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]DxkaqxrqEWa0dZ+z/jyakw==[/tex]被[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴平分。
举一反三
- 写出由下列条件确定的曲线所满足的微分方程:(1) 曲线在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处的切线的斜率等于该点横坐标的平方;(2) 曲线上点[tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的法线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴的交点为 [tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]DxkaqxrqEWa0dZ+z/jyakw==[/tex]被[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 轴平分。
- 曲线上点 [tex=2.786x1.357]25jAdQ4EVKhlk22U111yAg==[/tex] 处的法线与 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴的交点为 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 且线段 [tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex] 被 [tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 轴平分. 试写出由这些条件确定的曲线所满足的微分方程.
- 在上半平面上求一条向下凸的曲线,其上任一点 [tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的曲率等于此曲线在该点的法线 [tex=1.571x1.286]DxkaqxrqEWa0dZ+z/jyakw==[/tex]长度的倒数 ([tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex] 是法线与 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴的交点), 且曲线在点[tex=2.143x1.286]OGI1nc8WH38NKUnYUafisA==[/tex]处的切线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴平行。
- 写出由下列条件确定的曲线所满足的微分方程.曲线在点[tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex]处的法线与x轴的交点为Q, 且线段[tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex]被y轴平分
- 设位于第一象限的曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]过点[tex=4.071x2.929]Xnmlr+KlAtEKhTk/UWXCIL7ggPtFLVwR5KDedvKG5QiK49EY8IBiyTmrn7nPv59IylKPeJtYvXSpGIBOA6VJmg==[/tex],其上任一点[tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的法线与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的交点为[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]+40+xgx+PPxliwZt1F/RBA==[/tex]被[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴评分。(1)求曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的方程;(2)已知曲线[tex=3.786x1.286]BQBaxI8k9F73aCnSHszVhg==[/tex]在[tex=2.071x1.286]EsPCSN3OT9yaBYSPcaTCfA==[/tex]上的弧长为[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex],试用[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex]表示曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的弧长[tex=0.5x1.286]r65Ank8E1dV+BtDCLn5S+w==[/tex]。