设[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]为环[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]到环[tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex]上的一个映射,对[tex=3.286x1.214]3p9vSbuXy9b35NRjagiE2WHQaM8BVQGNQrcUwhPhw2o=[/tex]满足1)[tex=8.357x1.357]SW9xzMiS3AiisZ62RdoDh+ctXTbsD0OR9h7BQoiFpB0vXQ8Ayud4cPp3ujN/ygjg[/tex],2)[tex=6.786x1.357]lnEclGf+4P4Ds+dwUy+lbCNjUpTJ/dktRrz6wSM5PbIJdkah2nhthnPuxtU6nbuQ[/tex]或[tex=6.786x1.357]lnEclGf+4P4Ds+dwUy+lbLc7M6GQulIbsou6LSG/zxWcPqXchiHgXVRnXlO10XZz[/tex],证明[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]为同态或反同态。
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设 [tex=0.643x1.214]4ssBDc1re7hhNB3dpzYmRg==[/tex] 为环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 到环 [tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex] 的满同态. 证明: 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是交换环, 则 [tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex] 也是交换环.
- 设 [tex=0.714x1.214]o1HMeHvTnCSY+cMqAEISgQ==[/tex] 是环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 到 [tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex] 的同态满射,[tex=0.5x1.0]3EF1VcotinZAjtQqtSWaxw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想,[tex=0.786x1.143]EiNNRHzKTxg7zGjdHFOxvQ==[/tex] 是 [tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex] 的理想,那么(1) [tex=1.714x1.357]2+VR21kpEOyUGEehE2UvdA==[/tex] 是 [tex=1.0x1.143]vL/JscKF18qJf47ozsjQEQ==[/tex] 的理想;(2) [tex=3.286x1.5]/Rybg/8CUfBGAEQhpY7PXIK2RmbrEgHGC3vZadxbYqI=[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想。
- 9判别下列函数是否是周期函数,若是周期函数,求其周期 :(1) [tex=8.357x1.357]jijpvC8Aw74QOOOJh5Va05j3PtA64Pms1Q5qDGlqeN4=[/tex](2) [tex=5.643x1.357]TG5DUF3HrCbhIJWDEcp5Pj9u3e2PUgpbN4NJQ6DZXLw=[/tex](3) [tex=5.714x1.357]SBxtvKszj8+jJcycMEKn5vqfhi5GLWqH4Gac9QRbIHc=[/tex](4) [tex=6.929x1.357]NZ5EVFRfE4pFsgkbEOhFkNg5/qZx8geAT5eL+yzbq1Q=[/tex]
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。