• 2022-06-15
    已知直角曲杆 [tex=2.286x1.0]Zgrvl+SNXQuhNQ7K4dG1Hw==[/tex] 的 [tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex]臂长为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 以等角速度 [tex=0.643x0.786]B0PC2AKEHpSnHKwlNNx+FA==[/tex] 绕 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 点转动,小环[tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]套在 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]及固 定水平直杆[tex=1.5x1.0]+GDcXatUFjyTPsVPxB28RQ==[/tex] 上.试求图 a 所示位置[tex=2.643x1.071]j0HprgZjx6UO8bObekgYQMf1QU9V/AYYrCt9gLezzMY=[/tex] 时,小环 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]的加速度.[img=514x250]179cbe2e3b20de5.png[/img]
  • 动点,动坐标系的选择不变,则动点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 的加速度图如图 [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 所.由加速度合成定理有[tex=6.0x1.143]YGsgbexRUrt3HtZkL/s3TnIIzQWBjl3bhmqykktwI54=[/tex]即有[tex=7.643x1.286]tJZ0hr6fS4w3wZvqRb7ggAUK8lxvUa7SYEo+GoKOfxkkj0dIH5XpWhKsdydgFh20[/tex]投影到 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴,有[tex=11.143x1.357]u1nfXepbvni9lgIZHiyFT8xqvyCTIyRSozH0k2ATanv3I/Swn6wSw/H+tt9FU5oCEWhqiRfpRBvr+CEmMNrSBXrGhP47e+vqnF22tz/63sM=[/tex]由题意可知 [tex=27.0x2.143]rlLT5Jwlh620AqrB6OgqI8Fu84TEWamCraxeH9EwpwDIo1liGdul7KpxYkajnKv/7hv/WROUZm7S2Fkfl3kaFBGBZc7yUJ1qIkEuWG3HKXKIY6NUhAw8h1m7MMYRhXmwij0SCWPJ57Gx0k33EXeIyZAg5nevES+UV3EtaXSvAW94u7dIXfUlfmgZ1X+HNpvWJkVOgvCAu+71cTNF2V7erX3YyaQ/LAyHWFNDI7ib5Qk=[/tex], 解得[tex=1.714x1.0]Tqzpbx81IjfvDws8alHYJg==[/tex][tex=2.5x1.429]yi+A6esFx0QgpS+IyMSmfwedc0BR5lBqxDEdLcasJJw=[/tex]所以小环 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 的加速度为 [tex=2.5x1.214]ffbX65p5/oLXldVMVoLMdaUzUNGQyK8qVV9So/gSsqk=[/tex].[img=451x397]179cbeea8dae0d1.png[/img]

    举一反三

    内容

    • 0

      在题 7-9 图 a 所示机构中,曲柄 [tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex] 以匀速 [tex=5.214x1.357]ga5nebg0UwKYsZ3ivuF1Gg==[/tex] 绕 [tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex] 轴转动,带动 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 和 [tex=1.571x1.0]iW5Ht7EzAojfQ+hbsC5yyQ==[/tex] 运动。求当[tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 与[tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex] 、[tex=1.571x1.0]iW5Ht7EzAojfQ+hbsC5yyQ==[/tex] 两两垂直时,杆[tex=1.571x1.0]iW5Ht7EzAojfQ+hbsC5yyQ==[/tex] 的角速度及 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]点的速度。[img=529x219]179ccf7ddeadcd5.png[/img]

    • 1

      图示摇杆滑道机构中的滑块 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]同时在固定的圆弧槽 [tex=1.5x1.0]S6YiYmsVokvpaVMxlyTBUg==[/tex] 和摇杆[tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex]的滑道中滑动。如弧 [tex=1.5x1.0]S6YiYmsVokvpaVMxlyTBUg==[/tex]的半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex], 摇杆 [tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex]的轴 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 在弧[tex=1.5x1.0]S6YiYmsVokvpaVMxlyTBUg==[/tex] 的圆周上。摇杆绕 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 轴以等角速度 [tex=0.643x0.786]B0PC2AKEHpSnHKwlNNx+FA==[/tex] 转动,当运动开始时,摇杆在水平位置.分别用直角坐标法和自然法给出点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 的运 动方程,并求其速度和加速度。[br][/br][img=288x308]1797a56967dac55.png[/img]

    • 2

      图示摇杆滑道机构, 滑块[tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]同时在固定圆役槽 [tex=1.5x1.0]S6YiYmsVokvpaVMxlyTBUg==[/tex] 中和在摇杆 [tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex]的滑道中滑动。 [tex=1.5x1.0]S6YiYmsVokvpaVMxlyTBUg==[/tex] 弧的半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],摇秆绕 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 轴以 匀角速度 [tex=0.643x0.786]B0PC2AKEHpSnHKwlNNx+FA==[/tex] 转动, [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 轴在[tex=1.5x1.0]S6YiYmsVokvpaVMxlyTBUg==[/tex]卯所在的圆周上, 开 始时摇杆在水平位置。试分别用直角坐标法与自 然坐标法求䫚块 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]的运动方积、速度及加速度。[img=248x296]17d1d87bfbc06fa.png[/img]

    • 3

      图示行星齿轮传动机构中,曲柄[tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex]以匀角速度 [tex=1.0x1.0]ysdX5gVmYkNeU8u38DiImQ==[/tex] 绕[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]轴转动,使与夺轮 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 固结在一起的杆 [tex=1.643x1.0]MVc6UPmTmFFf7Oa5SRcJHg==[/tex]运动。杆[tex=1.5x1.0]HV1bOVh6u1NcnEcBkJEhFA==[/tex]与 [tex=1.643x1.0]MVc6UPmTmFFf7Oa5SRcJHg==[/tex]在点 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]铰接,并且杆[tex=1.5x1.0]HV1bOVh6u1NcnEcBkJEhFA==[/tex] 在运动时始终通过固定铰支的套筒 [tex=0.714x1.0]zAR8JLTji7MW5PnI4azq+Q==[/tex]。 如定齿轮的半径为[tex=1.0x1.0]hoplUPwr1O97HZdDgv8xzQ==[/tex], 动齿轮半径为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 且 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex][tex=2.643x1.429]Gq9WzfmIIf42eVO9W4pyIg==[/tex]。 图示瞬时,曲柄[tex=1.571x1.0]sfTyCWNEoQDFDIhZA62AjA==[/tex]在铅直位置, [tex=2.357x1.0]msL49Gl2QZ6paEoTaCQAVg==[/tex] 在水平位置,杆 [tex=1.5x1.0]HV1bOVh6u1NcnEcBkJEhFA==[/tex] 与水平线间成角 [tex=2.857x1.286]wpZZg1gjr/4tjqLY52h/v751Tu25OqIKPExxO7zfsN4=[/tex].求此时杆[tex=1.5x1.0]HV1bOVh6u1NcnEcBkJEhFA==[/tex]上与[tex=0.714x1.0]zAR8JLTji7MW5PnI4azq+Q==[/tex]相重合一点的速度和加速度。[img=240x164]1798a1b9fe6b4c7.png[/img]

    • 4

      若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?