已知某商场一天来的颈客数 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布,而每个来到商场的顾客购物的概率为 [tex=1.786x1.0]EIclI2WRkdmNKyY3W2ylwg==[/tex] 证 明: 此商场一天内购物的顾客数服从參数为 [tex=1.143x1.214]7sUEBU9QvFCXbBwFSBLySw==[/tex] 的泊松分布.
举一反三
- 设一天内进入某商场的顾客数服从参数为 [tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex] 的泊松分布,每位顾客购物的概率为 [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] , 且各位顾客是否购物相互独立. 以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 表示一天内在该商场购物的顾客数,求 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布律.
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布。求 [tex=5.286x1.357]t2WmSWvTpZdqSQbDpk4HSg==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的泊松分布,已知 [tex=8.286x1.357]JeJ8/6RX20sm9ZglY4Lbw3wZNaRTmLyH4AoPcax840w=[/tex], 求 [tex=3.786x1.357]7ZO21koX9AnR4jF5g8z0Lw==[/tex]。
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布,且[tex=8.286x1.357]LDgHReRZVA5QzpAkFsm37LX8N2D5xQRN5085qpjSnhc=[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 1 B: 1/2 C: 1/3 D: 1/4
- 已知随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]L2Atb4d5eWga5JCvxFtwvQ==[/tex]的泊松分布,[tex=4.857x1.357]F4m+q5YLqz1CpMYzT+XifA==[/tex], 则[tex=2.429x1.357]mcPoV0l2+P69G4jqQuIxgA==[/tex] A: 3 B: 1 C: 2 D: 0