2.抛物线$y=1-{{x}^{2}}$与$x$轴所围成的平面图形绕$x$轴旋转一周的体积为()$\pi $。(分式用形如x/y表示)3.曲线$y=\sin x(0\le x \le \pi)$与$x$轴所围成的平面图形绕$y$轴旋转一周的体积为()${{\pi }^{2}}$。
______
______
2
举一反三
- 2.抛物线$y=1-{{x}^{2}}$与$x$轴所围成的平面图形绕$x$轴旋转一周的体积为()$\pi $。(分式用形如x/y表示)3.曲线$y=\sin x(0\le x \le \pi)$与$x$轴所围成的平面图形绕$y$轴旋转一周的体积为()${{\pi }^{2}}$。4.曲线${{y}^{2}}=2x$与$y=x-4$所围成的区域面积为()。<br/>______
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( y \)轴旋转所得旋转体体积\( V \)=( )。 A: \( {\pi \over 2} \) B: \( {\pi \over 3} \) C: \( {\pi \over 5} \) D: \( \pi \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)为( )。 A: \( \pi \) B: \( {\pi \over 3} \) C: \( {\pi \over 2} \) D: \( {\pi \over 5} \)
- 求微分方程[tex=8.357x1.357]m5JIhzHdcS9bmKEwWvshLHUX4xMqwQRk2Suh2UXtBbw=[/tex]的一个解y=y(x),使得由曲线y=y(x)与直线x=1,x=2及x轴所围成平面图形绕x轴旋转一周所得旋转体体积最小.
内容
- 0
【填空题】曲线y=x 2 与直线x=4及x轴所围平面图形绕x轴旋转一周所得旋转体的体积为 .
- 1
【计算题】求曲线 与直线x=1,x=4,y=0所围成的平面图形分别绕x轴,y轴旋转一周产生的旋转体体积.
- 2
由曲线 \(y= { { x}^{2}},x= { { y}^{2}}\)所围成的图形绕 \(y\)轴旋转所得旋转体的体积为=( )。 A: \(\frac{3}{5}\pi \) B: \(\frac{3}{8}\pi \) C: \(\frac{3}{10}\pi \) D: \(\frac{3}{20}\pi \)
- 3
曲线y=e<sup>x</sup>(x<0),x=0,y=0所围成图形绕x轴旋转一周所得旋转体的体积为()。 A: π/2 B: π/3 C: π/4 D: π
- 4
由 \(y= { { x}^{3}},x=2,y=0\)所围成的图形绕 \(x \)轴旋转所得旋转体的体积为=( )。 A: \(\frac{16}{7}\pi \) B: \(\frac{32}{7}\pi \) C: \(\frac{64}{7}\pi \) D: \(\frac{128}{7}\pi \)