• 2022-06-11
     设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导, [tex=5.857x1.357]/v/rbm8y94xQjBrlnxRxnA==[/tex] 又[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续. 证明 : 一定至少存在[tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex]使得[tex=6.5x1.429]aWJWVBG3St35JwVMiGniOlnSiyAS3oZDWEyWQ5Lx8fx4MchmEpw2xhyFVGP0Nayc[/tex]
  •  证 由于[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,因此存在原函数 [tex=2.429x1.357]TS4DxOhcq5AJ1d6ysnN16w==[/tex] 即 [tex=5.286x1.429]KQqT7rufzalF7HhISPZpbhEe9uKKlftwMYeXZkBSv1E=[/tex]构造辅助函数[tex=7.429x1.571]e+Fb+PdiqJTagzb+HcOYQLrDQmh5TRAtRfSkOjOUQLM=[/tex]则 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导,且[tex=6.143x1.357]xv6L8Sh1lLrkRAq5zkLx7OFthb9lbWxrCtB28luJRkM=[/tex]由罗尔定理,存在 [tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex] 使得[tex=15.429x1.571]MtzCe9E4pIsnYjyo0KNgVG4Royx94UqahY7kMjwrv4ugZFDgeKKkgV2I2ueKUfUxT4UazBhw9t6XNGGkRvRmwhjbwwVNaf4Oi+8OSaH6PSdZx5lIOCRQZCQyBpx6ZhUv[/tex]化简即得 [tex=6.5x1.429]aWJWVBG3St35JwVMiGniOlnSiyAS3oZDWEyWQ5Lx8fx4MchmEpw2xhyFVGP0Nayc[/tex]

    举一反三

    内容

    • 0

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex],则[tex=10.0x1.429]BOXEzuhVMucQckW13ygVY8JTh2xCaqQTYWN/JsobNoDVoIPzlYS/nwzbAZk73+Oa[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有解。

    • 1

      设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex], 则 [tex=9.714x1.429]YEB+XWrIlL0FhJofV4x7Y88kjtYWQ/8Nf3OrSdZ5LNjoHhtu70p6mabGVjlb+X7j[/tex]在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内有解

    • 2

      设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导,且 [tex=4.286x1.429]856Pl9HNlDstK+TaTvDo/WImfr1CIEtqlsaEuEzPweQ=[/tex] 证明: [tex=4.857x1.357]AI7qFlwvAie2od8R8L5lQEHXATaPFQeeAoHx2D0Kcno=[/tex]

    • 3

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,且[tex=4.929x1.357]vsqAljJwaCI41tmcEDe2RQ==[/tex],[tex=4.714x1.357]J5a/iJiOVbkP4Gj3IppEvg==[/tex]证明:在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少存在一点[tex=0.5x1.214]Xvgwe+yswZgMoCwmPH37UA==[/tex],使得 [tex=4.786x1.357]WxzjsGjzIK8DDlrFrw790w==[/tex].

    • 4

      设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内可导,证明: 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内至少存在一点 [tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex]使得 [tex=11.429x2.5]G6iT5PwDUgfpVKfTn6zZJGq2U4kHdsBukmT86qP9BOAu2gg9pK88T0fMrQyFpPHflUhjXEa3oUR6Fxkuajchbg==[/tex].