设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex],证明存在[tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex], 使[tex=7.786x1.429]Xat13OcrnAmVJUgSxqIRyuLkSaISCueYDX9c/JVF1Ja/ApOxvWSDNwBO15h+lr9j[/tex]。
举一反三
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex],则[tex=10.0x1.429]BOXEzuhVMucQckW13ygVY8JTh2xCaqQTYWN/JsobNoDVoIPzlYS/nwzbAZk73+Oa[/tex]在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有解。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导,且[tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex], 则 [tex=9.714x1.429]YEB+XWrIlL0FhJofV4x7Y88kjtYWQ/8Nf3OrSdZ5LNjoHhtu70p6mabGVjlb+X7j[/tex]在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内有解
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在 [tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上可导, [tex=5.857x1.357]/v/rbm8y94xQjBrlnxRxnA==[/tex] 又[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续. 证明 : 一定至少存在[tex=3.143x1.357]3v9HBq0lFtIDOP11f7lbPg==[/tex]使得[tex=6.5x1.429]aWJWVBG3St35JwVMiGniOlnSiyAS3oZDWEyWQ5Lx8fx4MchmEpw2xhyFVGP0Nayc[/tex]
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上连续 [tex=6.714x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex], 且 [tex=7.214x1.286]gTP6d0OGvBAr/Cdd9DfHwOQN+yrtS4NwZEA/h3+j3U6MdPCavYSav1SP8PlKYpHK[/tex], 证明 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 至少存在一个零点.
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上连续,在[tex=2.214x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内二阶可导,且[tex=5.571x1.357]mMYUeNAe38X+/GvdLKmvRw==[/tex],[tex=8.429x1.357]PWEeqIF9hHDgPvuCfDZgow==[/tex]。试证:至少存在一点[tex=3.143x1.357]htJfTm2Yr41vXjV0YrMmqA==[/tex],使得[tex=4.071x1.429]79SmwT+8J9VTqKDgDEyFq6pmbgnCr+Bs7EkXECfy+oM=[/tex].