[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]产品中有[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]件次品,现从中任取[tex=5.929x1.357]CDmj33ikDbxT7Obd9WIEyzMtFHArMdrel3ii68pZ8gM=[/tex]件,以[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示取出的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]件中所包含的次品数,求[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布律.([tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布称为超几何分布.)
举一反三
- 一批零件中有9个正品,3个次品,安装机器时从这批零件中任取一个,如果每次取出的次品不再放回,求:[br][/br](1) 在取得正品以前已取出次品数的随机变量 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布列.[br][/br](2)[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex] 的期望 [tex=1.5x1.214]hKqulc5X9P7b0w5JdV8NeQ==[/tex][br][/br](3) [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的方差 [tex=1.571x1.214]7SB5RwwNU9gDW3RZPbSiVw==[/tex]
- 将[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个球随机地放入分别标有号码[tex=4.5x1.214]GK+NSLRH8xaRJJ8iGzp8YhaLb1JrN4SkQAUcZkIx4uk=[/tex]的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个盒子中去,以[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示有球的盒子的最小标号,求 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布律.
- 将一颗股子连掷两次,以[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示两次掷得的点数之和,求[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布律.
- 一个口袋中有 5 个同样大小的球,编号为 [tex=6.571x1.286]YmXLF+Cd/YbLiAHkocbfj+7Ut0BCCDgKCJBdOMq35jE=[/tex] 从中同时取出[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]只球,以 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示取出球的取大号码,求 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex] 的分布列。
- 一袋中装有 5 个球,编号为[tex=3.643x1.214]JH/h4v15Kf5Z52evRQrzWA==[/tex],在袋中任取 3 个球,以[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]表示取出的 3 个球中的最大号码,求 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布律和分布函数.