一个口袋中装有[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]个白球和[tex=2.286x1.071]Qc+GKoitzn8zRHFGKHjOmA==[/tex]个黑球[tex=3.643x1.357]pthje+AzVlioeGGOiEFsEg==[/tex],不放回地连续从袋中取球,直到取出黑球为止.设此时已经取了[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]个白球,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律.
举一反三
- 十个口袋中装有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个白球、 [tex=2.286x1.071]OeUcp+s39kjSaHDKbfv7Dw==[/tex]个黑球,不返回地连续从袋中取球,直到取出黑球时停止。设此时取出了[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]个白球,求 [tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex]的分布列。
- 袋中有 3 个白球, 7 个黑球,从中无放回地抽取,每次抽取一个,直到取得黑球为止. 以 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示取出的白球个数,求 [tex=1.571x1.0]pGYiD18r66gsUrCx6KlaQA==[/tex] 及 [tex=2.0x1.0]2ZlD0eMQFO54VTMZg06aQg==[/tex]
- 袋中有 3 个白球, 7 个黑球,无放回地抽取,每次抽一个球,直到取到的黑球为止. 设所抽到的白球个数为 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] ,求 [tex=2.357x1.357]EJJQujtT7g6OukOkTAKZgQ==[/tex] 和 [tex=2.714x1.357]NWdE7Sh9DB/zuR5IK/0xnQ==[/tex]
- 箱中装有某种产品,其中正品[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]个,次品[tex=2.286x1.071]Qc+GKoitzn8zRHFGKHjOmA==[/tex]个,不放回地从箱中抽取产品,直到取出次品为止,设此时取出了[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]个正品,求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布列。
- 口袋中有 7 个白球、3 个黑球.(1) 每次从中任取一个不放回,求首次取出白球的取球次数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布列:(2)如果取出的是黑球则不放回,而另外放入一个白球,此时 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率分布列如何.