求当 [tex=2.429x1.071]UE5K5T8FUdgYwuEY3OJARQ==[/tex] 时满足微分方程 [tex=6.214x1.357]NzbeZn/F52+84k5tMlbH6POI8zqZ5+5ZOjVfxP05oA0=[/tex] 且在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 取值为 1 的函数 [tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex].
举一反三
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 的某邻域内有定义, 且[tex=14.143x2.0]j9xQoAXOO/rhZ2v9jEBRiI8bw3CHft7hrxnaKNO/f+t5UbORG8jSsjO7SikHkPHo[/tex] 试判断:(1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可微? 若可微,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的微分;(2)函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可导?若可导,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的导数.
- 求函数[tex=3.643x1.429]BJxJ6uObfckThiyzkqY2NA==[/tex]在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的微分.
- 已知函数 [tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,当自变量 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 有增量 [tex=3.5x1.0]H8dR2EKmOxpvIKCqFXdWCw==[/tex] 时,相应的函数增量 [tex=1.357x1.214]HExYPNtnbkcB9k9ip8c8Nw==[/tex] 的线性主部为 [tex=2.0x1.286]0iK79Eazz2V/36yMWe0Ojg==[/tex], 求 [tex=2.429x1.429]OgeVTxSa7O82ix5e09gqWC1T76CNuEXaBeU0broSglg=[/tex]
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 对任意[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 均满足等式 [tex=6.286x1.357]9Henm3Boh97bCiQ4P5+RAg==[/tex], 且 [tex=3.357x1.429]vZRefRVGjKmtVlJAPwcIXW9YUXhX1maobUdc5ktFF0g=[/tex], 其中 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 为非零常数,则函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 未知类型:{'options': ['在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处不可导', '在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.429x1.429]OU887q0ErIncI157W+wgIwhKZZjX11IuczTVwAaGAWo=[/tex]', '在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.357x1.429]SGryHIpwYjPFzXIKKawxKubnTD/gL204ydOuJjc3dXo=[/tex]', '在 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处可导,且 [tex=3.857x1.429]OU887q0ErIncI157W+wgI7583lUhQ2fBxLJt88UZL9A=[/tex]'], 'type': 102}
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处连续,且[tex=8.929x2.5]7NlgzqI15HNHcOejhBoNosOsW2KJ7Xmd/+All790z5k/JwfbsNukNIhD8f+G+hVp[/tex].证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处可导,并求出导数 [tex=2.143x1.429]FvqGute248CTSaAIzNFe3g==[/tex] .