设[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]是环,若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的乘法运算[tex=0.357x0.786]3stqUD60J3TENUtnNSZsDFQMqfP8url0oAjL7awVSBI=[/tex]满足幂等性,即对于任意[tex=2.0x1.071]KGor3YkvnAcL7GdRJvfuNA==[/tex]有[tex=2.786x0.786]YzwMFgC+vEwkRU9i8gKO6Q==[/tex],则称[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]是布尔环。证明:布尔环是交换环。
举一反三
- 设[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]是环,若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的乘法运算[tex=0.357x0.786]3stqUD60J3TENUtnNSZsDFQMqfP8url0oAjL7awVSBI=[/tex]满足幂等性,即对于任意[tex=2.0x1.071]KGor3YkvnAcL7GdRJvfuNA==[/tex]有[tex=2.786x0.786]YzwMFgC+vEwkRU9i8gKO6Q==[/tex],则称[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]是布尔环。证明:若[tex=3.214x1.357]uksiiG06LdtMvlfMXVFgzA==[/tex],则[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]不是整环。
- 设[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]是环,若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的乘法运算[tex=0.357x0.786]3stqUD60J3TENUtnNSZsDFQMqfP8url0oAjL7awVSBI=[/tex]满足幂等性,即对于任意[tex=2.0x1.071]KGor3YkvnAcL7GdRJvfuNA==[/tex]有[tex=2.786x0.786]YzwMFgC+vEwkRU9i8gKO6Q==[/tex],则称[tex=3.214x1.357]oL5z0msbdM2jhC7gcfwDSijP/gyhXXSeY1At1l/R8mo=[/tex]是布尔环。证明:对于任意[tex=2.0x1.071]KGor3YkvnAcL7GdRJvfuNA==[/tex]有[tex=3.214x1.143]QmPIyHaJL2A1LU63hFnjEw==[/tex]。
- 证明环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 中乘法对于减法的分配律, 即对任意的 [tex=4.0x1.214]GSnbIj4aRuMumwY+9IZbqV4wnTLBrtadgoPGr6FiWUA=[/tex] (1)[tex=7.286x1.357]+CQzWFCwGZG7O5fkJNIzdlskLkWvdn0gETZFqU3Qhcs=[/tex] (2) [tex=7.286x1.357]UNJZuA7jM78cXo7ICRmuFKldYxWUXFalqseKVaWlx7M=[/tex]
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为布尔环,即环[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中每个元素[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]都有[tex=2.643x1.214]rGw4MkWcRtkyG2nvDYVhVw==[/tex]证明:若 [tex=2.643x1.357]lY19m87d4iVSMgivVn0dsD7I7TKqkVK+EMglhu5HHP8=[/tex],则[tex=0.786x1.0]XNP4Jpyr7QiS9iMSbxewJg==[/tex]不是整环.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个环, [tex=2.286x1.071]BX5Hq24pv20xx1ImfWhlnQ==[/tex] 如果存在 [tex=2.5x1.214]MUBOqhgSidNbIiPGutca8TrElVNegsU2eDrOYBfzzXU=[/tex] 使 [tex=2.571x1.214]vISNIN/rFHRC9rdtmDdjoQ==[/tex] 则称 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的一个幂零元(nilpotent element).(1) 试求 [tex=1.429x1.214]jBC5UhniB1q3BXBWtSyFOc2/wXu1a7+esOF5m9BzKww=[/tex] 的所有幂零元;(2) 证明: 如果 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex] 的交换环, [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个幕零元, 则 [tex=1.857x1.071]TckY1UXsKGQ9dh30ORCSzg==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的一个可逆元;(3) 证明: 交换环的幂零元全体构成一个子环.