设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是一个域. 证明:乘群[tex=1.214x1.071]plYiOGqsi2x51lvGPTzTvw==[/tex]为循环群[tex=2.857x1.286]6f+P4CIy45aab8A5ZwLRxzZ3TaC6dhfBvZcqVmvDO2M=[/tex]是有限域.
举一反三
- 求证: 域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是有限域当且仅当[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的乘法群[tex=1.214x1.071]6fYgj+1cuIkoM1Z53YlA3Q==[/tex]是循环群.
- 域 [tex=3.643x1.357]5JUuycUO1KhklBSu15Ggb37S+DLQUO5XYlNetxiVpXg=[/tex] 求 [tex=1.214x1.071]plYiOGqsi2x51lvGPTzTvw==[/tex] 的生成元,并 写出 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 中元两种表法的对应关系.
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是一个域,证明:在域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的一元多项式环[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中,有带余除法。
- 设 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 是个有限域. 证明: [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的任何 [tex=3.857x1.357]Lo5/9hooV/esSfDBT8vEeg==[/tex] 维向量空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 都可表为有限多个真子空间的并.
- 证明 :集合[tex=13.714x3.643]1SRQEQsw2EqIXC3oJ8f1M7rmJ5g5PphJRuOBiV8vox42Hu5SY+O1xru7XzJ70C5aGh9LLYHLTu6387EY6l+a3AP3FhSiN0GUZqyYWN13B7L0DRRwEyVund1aCDMmR/NRrxMHgjFwAirGlbPAaXvWMw==[/tex],当[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 为有理数域时[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]还作成域,但当[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]为实数域时[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]不作成域.