举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是有单位元的整环. 证明:若 [tex=4.571x1.0]e9dgkRD4ubLrCzzjIX5OfX7A5Q7gBBke5x+UKJII8/0=[/tex], 则[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 有子环与[tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex]同构.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是有单位元 [tex=3.143x1.357]BwybrwuFYErsCAQCXkFyKQ==[/tex] 的环, 证明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 中的可逆元不可能是零因子.
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为幺环,试证明:左[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]模[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的自同态环[tex=3.429x1.214]AMahXgRvckOkvLGOzTTBuAZ2VkgS1nNjQqm8M+IVxGI=[/tex]与[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]反同构。
- 在一个特征是素数 [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 的无零因子的交换环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]中,试证: 当 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 有单位元 1 时, [tex=4.429x1.357]4JrYOSIkMQoe3Y+F4Vi5Fc5yM1n+xB9pVJ12e7Wlm6A=[/tex]
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为幺环,试证明:右[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]模的自同态环[tex=3.286x1.214]TZTRDxIrnrgeWDCFK/AUreW7QrbLbLJHTsQZT5KgKx8=[/tex]与[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]同构。
内容
- 0
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是有单位元的整环. 证明:若 [tex=4.071x1.214]e9dgkRD4ubLrCzzjIX5OfYTkN9P1upXqByi+BV+G+gI=[/tex]([tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 是素数 ), 则[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]有子环与 [tex=1.071x1.286]Yf9vilsri8269WAMogYgOQ==[/tex]同构.
- 1
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, [tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的一个幂等元. 又令[p=align:center] [tex=20.143x1.357]1nNx0v0xahUov8iOMsbIJSTePpYEVwplkGBgTsS4c8sqIb+EnuG7ytbM1JlbstfDj0yZgartECCb5ywUL0GEWw==[/tex][p=align:center][tex=16.357x1.357]K74PCw+F0FdcOYfSdPHPtNBUkPbvTYXg6JylocAerDNeaw7pzXoIr6yj8NWIxwCw[/tex]([tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]不一定有单位元)证明:[tex=6.714x1.357]Bis8/eY8aphbE2JEKHudIA==[/tex]分别为环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的左、右理想.[br][/br]
- 2
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, [tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的一个幂等元. 又令[p=align:center] [tex=20.143x1.357]1nNx0v0xahUov8iOMsbIJSTePpYEVwplkGBgTsS4c8sqIb+EnuG7ytbM1JlbstfDj0yZgartECCb5ywUL0GEWw==[/tex][p=align:center][tex=16.357x1.357]K74PCw+F0FdcOYfSdPHPtNBUkPbvTYXg6JylocAerDNeaw7pzXoIr6yj8NWIxwCw[/tex]([tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]不一定有单位元)证明:[tex=5.714x1.357]Z3oibzrlRhHqic0yqSPhvQ==[/tex]与[tex=3.786x1.357]maY8sld12/N7audyO7jvLA==[/tex]都是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的子环,且后二者还是零乘环.
- 3
证明(1) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任意有限多个理想的和还是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想 (2) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的任意 ( 有限或无限) 多个理想的交还是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.
- 4
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, 集合[tex=17.429x1.286]1J1SivOWW5Z2LFlO+jxfjuA8rlk01xIOptZycDH6fm7g7o5b+NKM1GTrN/gR+I5wjUgevTCj5VTmWN/Pgsy1UA==[/tex]叫做环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的中心.[br][/br]求证[tex=2.286x1.357]jF3SYJxDJgm6KahDCZyxrQ==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的子环, 但不一定是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想.