举一反三
- 将两信息分别编码为[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]传递出去,接收站收到时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]被误收作[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]的概率为0.02,而[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]被误收作[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的概率为0.01,信息[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与信息[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]传送的频繁程度为2:1,若接收站收到的信息是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],问原发信息是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的概率是多少?
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]分别为r,t阶方阵,令[tex=6.714x2.786]5ZuEj1KRR/p9rD5ciF5Q2vvXSfjg0VXPHhmFWiPFS2/SA8KHwtoSVZP0YAs7p5AENY2TCY5M+lipH1NzujgJLw==[/tex].(1)证明:[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]可逆[tex=1.0x1.286]rOrw2E3Z1BdSSAw41TowZ4iHlO4qaDBsGJ7nVzEmCWM=[/tex][tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]均可逆;(2)当[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]可逆时,求出[tex=1.786x1.286]mvDokazZ7eCp/B72qeYNZA==[/tex]
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。
- 已知:(1)只有破获[tex=1.0x1.286]ZT9tugaVuLlLHdf8p0uttA==[/tex]号案件,才能确认[tex=4.286x1.286]FT+5gfnxggNH4Wev78eIdw==[/tex]三人都是罪犯。(2)[tex=1.0x1.286]ZT9tugaVuLlLHdf8p0uttA==[/tex]号案件没有破获。(3)如果[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]不是罪犯,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的供词是真的,而[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]说[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]不是罪犯。(4)如果[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]不是罪犯,则[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]的供词是真的,而[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]说自己与[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是好朋友。(5)现查明[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]根本不认识[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]。问:[tex=4.286x1.286]FT+5gfnxggNH4Wev78eIdw==[/tex]三人中,谁是罪犯?谁不是罪犯?请写出推导过程。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]表示三个事件,试将下列事件用[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]表示出来:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]都发生,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]不发生。
内容
- 0
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是任意二事件,证明:若事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]相互独立而且不相容,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]中必有一个是0概率事件.
- 1
插图中正方形[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]的面积等于1,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]是[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]的三个区域. 现在向[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]上均匀地郑随机点,以[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]和[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]分别表示事件:随机点“落人区域[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]”,“落人区域[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]”和“落入区域[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex](阴影部分)”.证明:事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]独立,但是事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]关于[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]并不条件独立.[img=276x265]178e06371b7d014.png[/img]
- 2
从 52 张扑克牌中任取 4 张,试计算:① 4 张中有 1 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;② 4 张中有 2 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;③ 4 张中有 3 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;④ 4 张中有 4 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率。
- 3
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为3阶矩阵,将[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的第2行加到第1行得[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],再将[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]的第1列的[tex=1.214x1.286]WDa3CFFbujv+acHNTSW8sQ==[/tex]倍加到第2列得[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex],记[tex=7.286x3.5]1JnQGSbfFjtycekdCEuXf6eY6UyTLXndyMUiVmbQVuEJlyWfJ1Rfz7nzrQ0oSAQ7RV+IjV8FxLSE3UU+2QrBFDQvbvJMIHSdI1/W7Gvs6wxolxRUXIAk76tYuRm+DFor[/tex],证明:[tex=5.286x1.286]Pe3qh48XyWfcNKI5CY5g7hO0aN8bAxlG6ChRvszNpdk=[/tex].
- 4
设[tex=6.357x1.286]fDsHrD/1ADylt6NYCFMXXSr60FDP0SkPA7Mm7WF1zqs=[/tex],判断论断是否正确:若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]相互独立,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]互不相容。