设 [tex=8.857x1.5]ApKrc+SIQI1kJAmMkBeHHtUUr68cKuvt51KPrxLGWLI=[/tex] 是一个整系数多项式. 证明: 如果 [tex=2.714x1.143]/zd+wBx41AflqScZJNv60g==[/tex] 为奇数, 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在有理数域上不可约.
举一反三
- 设 [tex=5.643x1.0]DkQMvCDF/4vyPYjHN/R9lbB/2LLigJYNE+lKntlZvD0=[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个不同的整数, 设 [tex=15.143x1.357]Hib6nPgvw27MrD4tVT56JuZToVv1kViqfdrL/Ux/MGRk8sUxDK+x7Vbi3hRxNN4eXuytUVm8V2ceNFsQs71CQ78Cccz4KqK9kUeE3kIeO6U=[/tex],证明: 如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 是奇数, 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在有理数域上不可约; 如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 是偶数, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是否在有理数域上不可约?
- 证明:有理系数多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有理数域上不可约的充要条件是,对任意自然数[tex=2.429x1.214]whrA0fswgExqGZH3sbR6mw==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex],多项式[tex=7.214x1.357]F6KQ2rAlES9L/e3AyywntQ==[/tex]在有理数域上不可约.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是一个次数大于零且首项系数为 1 的整系数多项式, 证明: 如果 [tex=1.786x1.357]7OQ6MnGIbo1txdlYbmL7wQ==[/tex] 与 [tex=1.786x1.357]jzGI6ryZy28xP+iLxVVAkA==[/tex] 都是奇数, 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 没有有理根.
- 设 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是复数域中某个数, 若 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合某个非零有理系数多项式 (或整系 数多项式) [tex=16.857x1.5]84e4VDcMQizbuEhyUYGO0BbQ3hSgwsxqFxv3TKY6B/83ClKlN986xEwarJDnUpXcRmDYVKafDemmqfBPM8vgsw==[/tex], 则称 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是一个代数数. 证明:设 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是一个 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合的首一有理系数多项式, 则 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 的极小多项式的充要条件是 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是有理数域上的不可约多项式.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于 1 的奇数次有理系数多项式且它在有理数域上不 可约, 求证: 若 [tex=2.357x1.0]7fK/cq1TxJ2b5g4iFumlWA==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在复数域内两个不同的根, 则 [tex=2.643x1.143]+j6YIiBK64dOtAI2TJqlMQ==[/tex] 必不是有理数.