设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是一个次数大于零且首项系数为 1 的整系数多项式, 证明: 如果 [tex=1.786x1.357]7OQ6MnGIbo1txdlYbmL7wQ==[/tex] 与 [tex=1.786x1.357]jzGI6ryZy28xP+iLxVVAkA==[/tex] 都是奇数, 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 没有有理根.
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数首一多项式且无实数根, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以表示为两 个实系数多项式的平方和.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是整系数多项式, 既约分数 [tex=0.786x2.357]TrkDKyZk9yHqx4n40IA11Q==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根, 求证: [tex=9.857x1.357]THMGr+8k++VybNgooTFrA6hP64l9N5j5XhhG5gB1cWk=[/tex] 是一个整系数多项式.
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是[tex=1.857x1.357]VmBbVJMXt2JXSfX9IcTKCw==[/tex]中的首一多项式,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的一个有理根,证明[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是整数。
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是实系数多项式,求证:(1) 若 [tex=4.0x1.357]4xX2ZK17ay5biPFwGeUUHA==[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 无重根且有奇数对虚根;(2) 若 [tex=4.0x1.357]tiPcAPj/8sVdzkpb54VwWQ==[/tex], 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 无重根且有偶数对虚根.
- 设 [tex=8.857x1.5]ApKrc+SIQI1kJAmMkBeHHtUUr68cKuvt51KPrxLGWLI=[/tex] 是一个整系数多项式. 证明: 如果 [tex=2.714x1.143]/zd+wBx41AflqScZJNv60g==[/tex] 为奇数, 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在有理数域上不可约.