• 2022-07-24
    设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域。 [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元多项式。如果存在[tex=7.929x1.357]K9NuB0z4ZFKvKXN85JfwTG2/VEjcLuk2denP6+Ed3rIjwdG1gThUGJwgAT+5xkAYnLYSXxKjW8xCYuMrxpK/Jg==[/tex]使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式。或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 。说[tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是互素的,如果除了零次多项式外,它们没有次数大于零的公共因式。证明[tex=0.571x0.786]q8alasyJjWIUZHYSwiX65A==[/tex],[tex=3.714x1.357]jcJ13op1r64hIVGF9Ndhhw==[/tex] 是互素的多项式 。能否找到[tex=2.714x1.357]vTJjVdiyKqB41xoFvb++Bw==[/tex],[tex=5.857x1.357]JXj4k5/AoqvJX1uJoyKlOhJn54sh1Yzupkz2c1Q1DhE=[/tex],使得[tex=8.429x1.357]XNI0Ueb0lTk7/5ErQadMn7oRyJ7O8lxMU+41iKECUp0=[/tex]?
  • 举一反三