设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域。 [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元多项式。如果存在[tex=7.929x1.357]K9NuB0z4ZFKvKXN85JfwTG2/VEjcLuk2denP6+Ed3rIjwdG1gThUGJwgAT+5xkAYnLYSXxKjW8xCYuMrxpK/Jg==[/tex]使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式。或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 。证明,每一多项式[tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex]都可以被零次多项式[tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex]和[tex=0.929x1.214]qE81a7F6mpH3XmIybOXNkg==[/tex]整除,[tex=1.786x1.071]TDg6xaBHc6/pa1eoo+jeew==[/tex],[tex=2.286x1.214]OggZ4FPbHnwn3k+w+7vtVw==[/tex]。
举一反三
- 设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域。 [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元多项式。如果存在[tex=7.929x1.357]K9NuB0z4ZFKvKXN85JfwTG2/VEjcLuk2denP6+Ed3rIjwdG1gThUGJwgAT+5xkAYnLYSXxKjW8xCYuMrxpK/Jg==[/tex]使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式。或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 。举一反例证明,当[tex=2.5x1.143]Z8A/nlCICwjyBsX7aR53kQ==[/tex]时,类似于一元多项式的带余除法不成立。
- 设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域。 [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元多项式。如果存在[tex=7.929x1.357]K9NuB0z4ZFKvKXN85JfwTG2/VEjcLuk2denP6+Ed3rIjwdG1gThUGJwgAT+5xkAYnLYSXxKjW8xCYuMrxpK/Jg==[/tex]使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式。或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 。说[tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是互素的,如果除了零次多项式外,它们没有次数大于零的公共因式。证明[tex=0.571x0.786]q8alasyJjWIUZHYSwiX65A==[/tex],[tex=3.714x1.357]jcJ13op1r64hIVGF9Ndhhw==[/tex] 是互素的多项式 。能否找到[tex=2.714x1.357]vTJjVdiyKqB41xoFvb++Bw==[/tex],[tex=5.857x1.357]JXj4k5/AoqvJX1uJoyKlOhJn54sh1Yzupkz2c1Q1DhE=[/tex],使得[tex=8.429x1.357]XNI0Ueb0lTk7/5ErQadMn7oRyJ7O8lxMU+41iKECUp0=[/tex]?
- 设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域。 [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex],[tex=7.857x1.357]jCWyoqjXrY64EOb88P87GtmT1ppj4w2rIYw7oajR7JlSwkMP50RE8fd9O3Yjq2IGHe0VdWmAlEPOZHH41RYPBQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]元多项式。如果存在[tex=7.929x1.357]K9NuB0z4ZFKvKXN85JfwTG2/VEjcLuk2denP6+Ed3rIjwdG1gThUGJwgAT+5xkAYnLYSXxKjW8xCYuMrxpK/Jg==[/tex]使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式。或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 。说[tex=7.857x1.357]Qm+cXiBudKrk1BuPycvA0GtPEpTsRlP0r8nG75EI1btvRGbK5ljWIddujZuAzlf3SeqpIiNBntryWjt+kadaLg==[/tex]是不可约的,除了有[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]和[tex=0.929x1.214]4r+9I21cGEnp/nHe9xi5gQ==[/tex]两种类型的因式外, [tex=0.5x1.214]xOiZa9kFnjYeHB3PTbO+3w==[/tex]没有其它的因式。证明,在[tex=2.571x1.357]t37p2pA9dj18o1EFiwWiXA==[/tex]里,[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],[tex=0.5x1.0]LQSmcMgqJM6GhH9AIdyAJg==[/tex],[tex=1.857x1.143]WT473J6iJyFLml9AmYU4qg==[/tex], [tex=2.286x1.429]PP5qE2O/2hzLHHZplwZSKg==[/tex]都不可约。
- 设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域.[tex=7.357x1.357]oFczQMpeI1pC0RG5YTtogQP81WmiQQL2jEXHxqcSfgz7cXS9i0sXDEidLzRkquiT[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]元多项式. 如果存在[tex=6.714x1.357]1u2I3rFzkSFUWXG3YUE8UCRrz09TIUVHCqLUYjEYW0u/ZDL8hBGMRxUxMbaPwJaD[/tex],使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式. 或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex].举一反例证明,当[tex=2.5x1.143]Z8A/nlCICwjyBsX7aR53kQ==[/tex]时,类似于一元多项式的带余除法不成立
- 设[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是一个数域.[tex=7.357x1.357]oFczQMpeI1pC0RG5YTtogQP81WmiQQL2jEXHxqcSfgz7cXS9i0sXDEidLzRkquiT[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]元多项式. 如果存在[tex=6.714x1.357]1u2I3rFzkSFUWXG3YUE8UCRrz09TIUVHCqLUYjEYW0u/ZDL8hBGMRxUxMbaPwJaD[/tex],使得[tex=2.357x1.214]zMwXmmQ73pXRZ5GcslRYtg==[/tex],那么就说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]是[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的一个因式. 或者说[tex=0.5x1.0]wPh71/L+tm8emC/JD+8oZg==[/tex]整除[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex](i证明,每一多项式[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]都可以被零次多项式[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]和[tex=0.929x1.214]4r+9I21cGEnp/nHe9xi5gQ==[/tex]整除,[tex=4.286x1.214]gphoE18kXjadNgPKKD/PVLvitBmwkCCZQYfxN/LDTa8=[/tex](ii)[tex=6.643x1.357]Qm+cXiBudKrk1BuPycvA0MO5Mv94WLpr6NhWC1zitYvqJfLQqnER3vPqxkhoCc6o[/tex]说是不可约的,如果除了(i)中那两种类型的因式外,[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]没有其他的因式. 证明,在[tex=2.571x1.357]t37p2pA9dj18o1EFiwWiXA==[/tex]里,多项式[tex=6.0x1.429]78DnEottU6J+QS54iEEoS/uMohWSkyQ3Sjf4VvwLG88=[/tex]都不可约