• 2022-07-25
    设 [tex=11.929x1.357]ice6bcUR3YimswQXZxodev6NLfNukJEw3FNGWSX4lehtKwEtdh7CgbcPXnMKUe2N[/tex] 证明: 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式, 则齐次线性方程组 [tex=4.214x1.357]pC9m1zqg59ZNhWkO8T8P1w==[/tex] 的解空间等于 [tex=4.143x1.357]vKJQpM+M2PlEhFTwZzZ0bg==[/tex] 的解空间与 [tex=4.143x1.357]eV/jMpgDUlr9PewIWutV2Q==[/tex] 的解空间的交.
  • 解:利用定理3,即对于 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中任意两个多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 存在它们的一个最大公因式 [tex=2.214x1.357]D3kvqV3YaeS8RzCUvXKwKA==[/tex] 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 可以表示成 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 即有 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中多项式 [tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex] 与 [tex=1.857x1.357]xcTe3Sdqv0rnrdNTbK1JGQ==[/tex], 使得 [tex=11.143x1.357]w+LHR0I7uOl2EKJXlgsVgulJYBKPVHCcCZeLwZKJIXuhm7Fd5X4Cxo/Q+GtgPPbE[/tex]以及一元多项式环的通用性质可证得: 如果 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 属于 [tex=4.143x1.357]vKJQpM+M2PlEhFTwZzZ0bg==[/tex] 的解空间 [tex=1.357x1.214]3Qb+YU2PFF7nCdmCArv4Tg==[/tex] 与 [tex=4.143x1.357]eV/jMpgDUlr9PewIWutV2Q==[/tex] 的解空间 [tex=1.357x1.214]R0+mD4H4wS7x250ln3KFBg==[/tex] 的交, 则 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex] 是 [tex=4.214x1.357]pC9m1zqg59ZNhWkO8T8P1w==[/tex] 的解. 设 [tex=14.071x1.357]PgYyQqvFHkb2l3rVC0yD3aAQElhhnFM1Toz753oBdoyBHxsQosD/cXL/qcMKb8kQ[/tex] 用一元多项式环的通用性质可证得: 如果 [tex=0.571x1.0]+B0ihYk4mk489WCT9f73WA==[/tex] 是 [tex=4.214x1.357]pC9m1zqg59ZNhWkO8T8P1w==[/tex] 的解, 则 [tex=0.571x1.0]+B0ihYk4mk489WCT9f73WA==[/tex] 也是 [tex=4.143x1.357]vKJQpM+M2PlEhFTwZzZ0bg==[/tex]的解, 并且 [tex=0.571x1.0]+B0ihYk4mk489WCT9f73WA==[/tex] 是 [tex=4.143x1.357]eV/jMpgDUlr9PewIWutV2Q==[/tex] 的解. 

    举一反三

    内容

    • 0

      设 [tex=9.214x1.357]oVr3Dwq4mCJpVeSnaB2gBSqRRI0mgMhbkNKKzB8hCuo=[/tex] 中的一个多项式 [tex=2.286x1.357]Ag+wTR6A0dJofzIiroQ/6w==[/tex] 称为 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最小公倍式, 如果1) [tex=9.429x1.357]m1EBBdKEXv9v36Fy4gQ/+7AP03BpeLROQalNuHobJ3s=[/tex]2) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的任一公倍式 (即 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中既能被 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 整除, 又能被 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 整除的多项式) 都是 [tex=2.286x1.357]Ag+wTR6A0dJofzIiroQ/6w==[/tex] 的倍式. (用 [tex=4.714x1.357]hvdzEuFkEvrNjuF8e4Z/2g==[/tex] 表示首项系数是 1 的那个最小公倍式, 证明 : 如果 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex] 的首项 系数都是 1 ,则 [tex=10.786x2.714]86eOesvSLJzo0xGCqVDGZjz8QI0p4+K1nnRoxp7vWiIU89VBq3OOdIIooTYE8A8C[/tex]

    • 1

       设 [tex=16.357x1.5]kr7k0KBPUeONeZwTW+894khfetYN31lKq1nVLp8hE2dcnyvRVQtizVN+TeVGKedy[/tex](1) 求[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的商 [tex=1.857x1.357]9+kIsKaWTXKIfcjZp3srqA==[/tex]和余式 [tex=2.143x1.357]u0kLHrRFHKwKpOrb+U7MSA==[/tex](2) 求首项系数为 1 的最大公因式 [tex=5.214x1.357]ULfD42YUHpUMzAJu7WPRDKu5//4FSSF/xXyTUDWUUQw=[/tex](3) 求多项式 [tex=4.071x1.357]jxvhZiY+yy3z8BpZfEQInA==[/tex] 使[tex=13.929x1.357]Wh/7jOZlE0fZtGn7AMNHm89Nhtbm+DWd6RzkJ1+fXVGFMF0xdqviYq0jE8QpoFCF[/tex]

    • 2

      求多项式[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]与[tex=1.857x1.357]HPAY/8lZdPTeVaC829Iu0A==[/tex],使得[tex=10.857x1.357]goysNU0bxWSUXJzgE3jjR8RUz5lHAT4A9BUBlPX15Jc=[/tex],[tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]是多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式,[tex=11.571x1.5]/aSXGCwVlv2Cp56C/P2kFPuSRYF1mEWI14XublbdAB6qhIm+sV6/n5yiV1D+01hf[/tex],[tex=6.214x1.5]HmSEFmtll3Kr2APMHt7E/g==[/tex]。

    • 3

      求多项式[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]与[tex=1.857x1.357]HPAY/8lZdPTeVaC829Iu0A==[/tex],使得[tex=10.857x1.357]goysNU0bxWSUXJzgE3jjR8RUz5lHAT4A9BUBlPX15Jc=[/tex],[tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]是多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式,[tex=9.857x1.5]9lBOqsVx8jRkhUTJDDYUuxpjmIhwV/CHtemDUucFZfc=[/tex],[tex=6.643x1.5]F5ZA02DDOySSAGfdYNNn1g==[/tex]。

    • 4

      求多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式:[tex=11.143x1.5]r6t5VWzJm+Xv3ozECYSctN0R3aWWnoOc6/YrC7wtNug=[/tex],[tex=8.429x1.5]h6XIQiULBKNc9dBUvH0Ak4ErFCr/fOQUigAQh2Hwc3Q=[/tex]。