设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群且[tex=4.929x1.357]W5SI+V/Ykf5VFGgvg55aNA==[/tex], 证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]与[tex=6.929x1.357]5QJWC7+XwfurN5BXLfL2dcXNdbP4kICK9Uoho98wlT8=[/tex]的一个子群同构。
举一反三
- 设[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,证明:[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的特征子群,当且仅当对[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个自同构[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]都是[tex=3.786x1.357]/hUAIv2XJLX3YXBqW5nP/A==[/tex].
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是循环子群且在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中正规,则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 的子群在[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中都正规 .
- 证明:若群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶子群有且只有一个,则此子群必为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。