在 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]中, 设[tex=7.643x1.357]ts0bpSAD9HRVjyqguzn+u0dKIYlserW+g0Gnqa5AGfcvCLwKUOFABx8naKvp1wIE[/tex] 证明: [tex=5.286x1.143]nOctPd4VbunwFFcP5eYdJghRoh/Yw4ZUH59t3qs9/qw=[/tex]问 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 与 [tex=2.929x1.143]CBKnVpH2kRbDcI7bLpVA1A==[/tex] 同构吗?
举一反三
- 试验证:[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]关于加法运算[tex=0.786x1.071]sISe4zlsm5XRzMPtQa+aFQ==[/tex]和减法运算[tex=0.714x1.286]X/AHY4NbPw73ig6oyC9Cig==[/tex]均没有零元素,而[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]关于乘法运算“[tex=0.357x0.786]3p9iFfA+hJQ9w74wku7eHg==[/tex]”的零元素为[tex=0.5x1.0]XY6YYp8hrFkvsD3cyFa49A==[/tex]。
- 证明: 整数加群 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 与偶数加群[tex=1.214x1.0]+V46ub7nxPznegKWRX7v4g==[/tex]同构。
- 求[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树存储的最大记录数:(1) 高度为 3 的 5 阶[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树;(2) 高度为 5 的 5 阶[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树;(3) 高度为[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]的 5 阶[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树。
- 证明: 整数加群[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 不与有理数加群 [tex=0.929x1.214]ipY8J/5IDyDdvaflKWkPEg==[/tex] 同构。
- 在[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]中定义二元运算“[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]”为[tex=6.214x1.143]3V6CCeCkNxqQNFwRpXHkiXnUGqhvmn8mx00e/Rc98P0=[/tex],[tex=4.214x1.214]dhuqL63QqIBFusvLbt2tfDVZ4hzuVI6mFxRd6v8kuc4GkeBcqX2hblOqCUuWjhyO[/tex],则[tex=2.714x1.357]EPuok4BTh7TJ+jfxxbiltcTLtJNGwADahsPrRPDn8U8=[/tex]是一个幺半群且与[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]对乘法的幺半群同构。