举一反三
- 试验证:[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]关于加法运算[tex=0.786x1.071]sISe4zlsm5XRzMPtQa+aFQ==[/tex]和减法运算[tex=0.714x1.286]X/AHY4NbPw73ig6oyC9Cig==[/tex]均没有零元素,而[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]关于乘法运算“[tex=0.357x0.786]3p9iFfA+hJQ9w74wku7eHg==[/tex]”的零元素为[tex=0.5x1.0]XY6YYp8hrFkvsD3cyFa49A==[/tex]。
- 证明: 整数加群 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 与偶数加群[tex=1.214x1.0]+V46ub7nxPznegKWRX7v4g==[/tex]同构。
- 求[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树存储的最大记录数:(1) 高度为 3 的 5 阶[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树;(2) 高度为 5 的 5 阶[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树;(3) 高度为[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]的 5 阶[tex=0.714x1.0]jVFRmP3HndwdDGCwdFmiLg==[/tex]树。
- 证明: 整数加群[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 不与有理数加群 [tex=0.929x1.214]ipY8J/5IDyDdvaflKWkPEg==[/tex] 同构。
- 在[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]中定义二元运算“[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]”为[tex=6.214x1.143]3V6CCeCkNxqQNFwRpXHkiXnUGqhvmn8mx00e/Rc98P0=[/tex],[tex=4.214x1.214]dhuqL63QqIBFusvLbt2tfDVZ4hzuVI6mFxRd6v8kuc4GkeBcqX2hblOqCUuWjhyO[/tex],则[tex=2.714x1.357]EPuok4BTh7TJ+jfxxbiltcTLtJNGwADahsPrRPDn8U8=[/tex]是一个幺半群且与[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]对乘法的幺半群同构。
内容
- 0
设[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex]为整数集.在[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 上定义二元运算[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]如下:[tex=10.786x1.214]VHheR/r37dNq/LGfjMnDwU3mE93qKIXInrPGYNfPaaqHxwTOd8YvfHyj/PFvG7SnogJ+qev1H9Pf8I5SfdmPNA==[/tex]问 :[tex=0.643x1.0]UOEtelDFT4PKwSr01e5NKg==[/tex]关于[tex=0.5x0.786]ZZdfGN8ROAaru4eGZpmpGQ==[/tex]运算能否构成群?为什么?
- 1
在整数加群[tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 中, 证明: [tex=3.857x1.357]XOXJsEBvQ3hgWyegLTxTVNbkfQyY42JL+vo55E7LGHOGo8mxeNLG+2ft1yhCoLhU[/tex] 当且仅当[tex=3.5x1.071]pFxpaecbWdUULhxfASY1nw==[/tex]。
- 2
设 [tex=6.071x1.357]NiEcjLjEuy7mbQy76WA5cwwNQk3Vkqj+P34PN/vicnpY9HUnmQa+8xXl252kud3O[/tex] 都是 [tex=0.714x1.0]oaXPjenEQATpEhakjoja5g==[/tex] 的理想. 求以下各理想的生成元:(1) [tex=1.786x1.143]jBrFXmbrFdm8/uM+mi50wQ==[/tex].(2) [tex=2.143x1.0]JTcsIp6iUsXC4XI3TQ1ntw==[/tex].(3) [tex=1.286x1.0]jyy5eN1F9/Vy1XfJ9moF8Q==[/tex]
- 3
若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 4
若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?