证明欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]的子空间[tex=13.429x1.357]l4n0xkgFXGGZAeEWYZHPAjHYHcMYP3iF1C+2TJJELNVmZwBO02PJaQnjVRJoeZglbvvOevD7iP2XKH7aKwTa4A==[/tex]不同胚于[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]。
举一反三
- 设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为从欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]到实数空间[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]的连续映射,证明[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]中最多只有两个点的[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]原象为非空的可数集。
- 证明欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]中所有至少有一个坐标是有理数的点构成的子集是[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]的连通子集。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 证明欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]中所有第二个坐标为有理数的点构成的集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与所有第一个坐标为0的点构成的集合[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的并集 [tex=2.643x1.0]nnfU3ueC7heOntsosOPpjA==[/tex]是连通子集;但[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]不是连通子集。
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]