举一反三
- 一射手进行射击,每次击中目标的概率为 0.7 ,射击进行到击中目标两次为止. 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 表示第一次击中目标所进行的射击次数,以 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 表示总共射击次数. 试求: [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的联合分布律.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 社某射手每次击中目标的概率是[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex],现在连续地向一个目标射击,直到第一次击中目标时为止.求所需射击次数[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的概率分布.
- 甲、乙两人独立地各进行两次射击,假设甲的命中率为 0.2,乙的命中率为[tex=1.571x1.0]qY5H9BsxcR35+g1+/g7hiA==[/tex] 以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]分别表示甲和乙的命中次数,试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和 $Y$ 的联合概率分布.
- 将一枚硬币重复前 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次,以[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 分别表示正面朝上和反面朝上的次数,试求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的协方差及相关系数.
内容
- 0
假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 1
一射手射击命中目标的概率为p(0<p<1),射击进行到击中目标两次为止,设以X表示第一次击中目标所进行的射击次数,以Y表示总共进行的射击次数,试求X和Y的联合分布律.
- 2
判断由 [tex=2.643x1.357]DJUMdJyw8QoCXHzomLtAYg==[/tex] 的分布可确定 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的边缘分布.( )
- 3
假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 4
某射手有 5 发子弹,连续射击直到击中或子弹用尽为止,每次射击命中率为 [tex=1.286x1.0]FXZjhGs0Lbafydcw2mTj/g==[/tex],求耗用的子弹数[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布.