A: f1=(x1-x2)2+(x2-x3)2+(x3-x1)2
B: f2=(x1+x2)2+(x2-x3)2+(x3+x1)2
C: f3=(x1+x2)2+(x2+x3)2+(x3-x4)2+(x4-x1)2
D: f4=(x1+x2)2+(x2+x3)2+(x3+x4)2+(x4-x1)2
举一反三
- 以点(1,3,−2)为球心,且通过坐标原点的球面方程为() A: (x−1)2+(y−3)2+(z+2)2=14 B: (x−1)2+(y−3)2+(z−2)2=14 C: x2+y2+z2=14 D: (x−1)2+(y−3)2+(z+2)2=2
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 下列二次型中是正定二次型的是( ) A: f1=(x1-x2)2+(x2-x3)2+(x3-x1)2 B: f2=(x1+x2)2+(x2-x3)2+(x3+x1)2 C: f3=(x1+x2)2+(x2+x3)2+(x3-x4)2+(x4-x1)2 D: f4=(x1+x2)2+(x2+x3)2+(x3+x4)2+(x4-x1)2
- 下列二次型中是正定二次型的是( ) A: f1=(x1-x2)2+(x2-x3)2+(x3-x1)2 B: f2=(x1+x2)2+(x2-x3)2+(x3+x1)2 C: f3=(x1+x2)2+(x2+x3)2+(x3-x4)2+(x4-x1)2 D: f4=(x1+x2)2+(x2+x3)2+(x3+x4)2+(x4-x1)2
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
内容
- 0
下述断言正确的是( )。 A: $x-1$是$(x^{2}-1)^{3}(x^{3}-1)$的$3$重因式; B: $x^{2}-1$是$(x^{2}-1)(x^{3}-1)$的单因式; C: $(x-1)^{2}$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$2$重因式; D: $x-1$是$(x^{2}-1)^{2}(x^{3}-1)^{2}$的$4$重因式。
- 1
微分方程\(2y''+5y'=5x^2-2x-1\)的通解是( )。 A: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2+\frac{7}{25}x\) B: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3-\frac{3}{5}x^2\) C: \(y=C_1+C_2e^{-\frac{5}{2}x}+\frac{1}{3}x^3+\frac{7}{25}x\) D: \(y=C_1+C_2e^{-\frac{5}{2}x}-\frac{3}{5}x^2+\frac{7}{25}x\)
- 2
$(-x-1)(x^{4}+2x^{3}-x^{2}-4x-2)+(x+2)(x^{4}+x^{3}-x^{2}-2x-2)$的结果是( )。 A: $x^{2}-2$; B: $x^{3}-x^{2}-1$; C: $2x^{3}-4x-2$; D: $x^{4}+3x-2.$
- 3
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 4
求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是: