举一反三
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]/eteMVgr5NF8LH/YGodIxg==[/tex]上连续,在 [tex=2.143x1.286]tyW3u5Kp6lEiCHLlch0uLw==[/tex]内可导, 且[tex=3.643x1.286]01iTHaAOWrq6T4dbzAxzlg==[/tex],证明存在一点 [tex=3.857x1.286]5zjDng9PhWFx/6htRSRGM7hrumFGkTCVk8J8rENrcDY=[/tex],使[tex=7.357x1.286]JdkKVIP/enipKA6AjL0m0VEdUGPvifqWGuyYHXAKfRLrj6dEo2rWOJpNmxY0nvuL[/tex]。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]fTjcX/imJY/RbWWUXzgZtg==[/tex]上连续,在[tex=2.143x1.286]tyW3u5Kp6lEiCHLlch0uLw==[/tex]内可导,且[tex=3.643x1.286]01iTHaAOWrq6T4dbzAxzlg==[/tex],证明存在一点[tex=4.286x1.286]0Tn10QaRD7AU39yxB2vjZfg0mKfx+GGQ3/TWPeqsm0c=[/tex],使[tex=7.214x1.286]0BqjgtYQgGnz8H8mIR5L4G4XQmAm2niJiae8+w6lfX8=[/tex] .
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=8.286x2.643]tIomMAsesAy1VM7HugkvwpnbMTbOlxz11IyZXZRibeY0WQ870A9CYQOq2W1ZVgaX[/tex],证明在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内存在一点 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使[tex=3.857x1.286]0o6buAQ5WD2oecMXnej5rGJfy0hlAviIntaWqgT/AKA=[/tex]。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在 [tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex] 上连续、可导且 [tex=3.643x1.286]01iTHaAOWrq6T4dbzAxzlg==[/tex],若存在正常数 [tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex],使得 [tex=6.929x1.286]dKfAGo3rU9ALC9dg+OnL06RoMzozmczP4A5vbEP9n1rDfwdNfo7cjpfGNpqPBrTi2q32HcmgeEtqKNvDuhfoXg==[/tex]。 证明:在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]恒等于零。
- 设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=8.571x2.571]UF7dBGCRcfNgGnC4UknKXyW5hXHGsttIjPyN2HaMghDH7B1vOhYBcqRzk9mKeton[/tex],证明:在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内至少存在一点[tex=0.5x1.286]cFLrzlMvECfU5CTqcvierw==[/tex],使[tex=3.643x1.286]zlTa8MtwhCDPYWZctn92XQ==[/tex]。
内容
- 0
设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 1
设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续, 在[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=8.0x3.0]NMeyz8ghtotq7DTsULLmBYirfEGxIEpcXYX8j8KlwM4i4oF6o2DP8HLv/ue3EX2NfR3RSORXmOJxm44uem5hHQ==[/tex],证明在 [tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内至少存在一点 [tex=0.5x1.286]m/VGGUpsnKNFGYXigdTc/A==[/tex], 使 [tex=3.857x1.286]0o6buAQ5WD2oecMXnej5rGJfy0hlAviIntaWqgT/AKA=[/tex]。
- 2
设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上连续,且[tex=4.929x1.286]Tl8MB4h1s5yhfAlp+4THMA==[/tex],求证:存在[tex=3.643x1.286]J2AjFpkP+hpGpzwZ3DOuKA==[/tex],使[tex=7.643x2.357]oQcl4jo5HYDn2Se78tIWRPrgLZJ+l4DivZb27VGeqvh0K4mInGNwJMnUj2avgCsW[/tex]。
- 3
设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=1.929x1.286]vPlUmwL8t1REs9r1XOy2kg==[/tex]上连续,在[tex=2.071x1.286]Q9EbYIIWqK0gqhJcCkS6lw==[/tex]内可导,且[tex=6.714x1.286]e2rQdJIDX6m4QJxK4bB8yA2e0ZugzW2OtDjTuouKEaU=[/tex]。证明:存在[tex=3.786x1.286]SbN3kpDDnb/P3zq8kyuo+NJnVohO3ICcnzxPaGrEl7c=[/tex],使[tex=5.143x1.286]lzQv80ZLeUASAnm5Ehn9hQtomBXUBJo6Y1MmZx2MEUM=[/tex]成立。
- 4
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在区间[tex=2.571x1.357]kT0oII0we74GwpbVOY0ySQ==[/tex]上连续,且[tex=5.429x1.357]59tnZk/MTeLaeqFrBGINZA==[/tex],证明:在[tex=1.929x1.286]fTjcX/imJY/RbWWUXzgZtg==[/tex]上至少存在一点[tex=0.5x1.214]Yp8n+BSB2k4l/YvG+KhxfQ==[/tex],[tex=5.5x1.357]Yf1tR62LlHfwkGBeQL6cxgvraDZigGGQjEy5kp/0U0Y=[/tex].