设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 分别为 [tex=0.929x0.786]o6X45tpG/qifjWfiPhyOpQ==[/tex] 元集和 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 元集,[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 和 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为正整数,则从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 有多少个函数?其中有(1) 当 [tex=0.929x0.786]o6X45tpG/qifjWfiPhyOpQ==[/tex] 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 满足什么条件时存在单射函数?有多少个单射的函数?(2) 当 [tex=0.929x0.786]o6X45tpG/qifjWfiPhyOpQ==[/tex] 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 满足什么条件时存在双射函数?有多少个双射的函数?
举一反三
- 设 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个列向量线性无关, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的秩 未知类型:{'options': ['大于\xa0[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]', '大于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '等于\xa0[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]', '等于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]'], 'type': 102}
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异复矩阵, 证明: 对任一正整数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex], 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩 阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=3.0x1.0]+IqgQg4qIKOkoB245qBMJQ==[/tex].
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的特征值且 [tex=3.857x1.0]ooePFz0xjtusf6vpqQWa8A==[/tex], 求 证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似于对角矩阵.
- 设 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 互素, 则 [tex=12.214x1.286]IFwYP9BVkN5YVuM5c7f1WxWvypr17i+qbZyDObh3OQpGBQMnwiGnWN5egvp4zCG9qAvY+o6PpL8KSDuq3fnVCg==[/tex].
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]及[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]都可逆,求:[br][/br][tex=5.929x2.929]jcCMHflCR8OS9TosV6N5vF5TBJ+hnWfKaPJMOj8+lW0ygKrP6wzvVGy4qDOEHs7MmQbphQ3QGPzl+GgH9R2nuUXdv9OFV78Y/zQ8LkM9gwU=[/tex]