• 2022-07-24
    如果半群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有左幻元[tex=0.5x0.786]TBa/wxVah6IkxUQi/stEBg==[/tex],对[tex=3.143x1.071]T0RveP9X50AYgo23dfRGIYwsjLnrq/g5DcfMhKejxgU=[/tex],有右逆元(即有 [tex=2.214x1.214]tCu1hVBxUUjXSEw2ss1iACgTd3P981gUP2sdAiBzDzw=[/tex]使[tex=2.571x1.143]LIbZamywXb99op29Y4+VMcQ26MRHbO3pmNhmOCOKzDk=[/tex]),问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是群吗?
  • 解:令[tex=14.357x2.786]zKcOyCprQKBm+BBAxetq2SjwvYtrNvoOShD/IyXjdF86K5jLV04Corm0SUm/FDdOmH0PvWvIiN7zOiz2RDZ0VrR0CgHKCHKKOkLXwfnp3kjc77eOfTaInsn19mHaPMnmth/NbLzN8cv8Nu9VzJKEEn2X93V7ozCbc+0Y5otIVc0=[/tex],由[tex=17.5x2.786]jcCMHflCR8OS9TosV6N5vMnCeR92vTTdgMhX7rWVb4DSPnC43DBqJs26IYMQexU7+duhDaRyXIHARaaQBAe1zsCn0SLb8BpP0bWNAgZFB6zzbf+qnzQcK1pKAv3v6AVDJcUHQpMaMDW/l0OEwesuepM8hvAwVcpbTDh4ysGvUsdjbyosnBLHeIJiH6DFrLJk0l1nPTcJNjdUlWHZlvopqQe360VUitw7TVZAH6poN2iXRmLcRTn124oIheN0JzMj[/tex],知[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是以 [tex=6.0x2.786]8H9Ls6nfrmBshhOpVH1pOvA0wEeuaKwlYJpwsFn+qCrEezKU/UYGwMGZTZJXM5e+m40MXB9bBWnL0oHF2Gu5MyhEwYZiqBN5lIyhX9FT+Ko=[/tex]为左幺元的半群,由[tex=17.214x2.786]jcCMHflCR8OS9TosV6N5vMnCeR92vTTdgMhX7rWVb4DSPnC43DBqJs26IYMQexU7+duhDaRyXIHARaaQBAe1zsCn0SLb8BpP0bWNAgZFB6yX8wtLVoUW2Dxncry/ehdnOuhcnu4eI/laMeAbAiPWq+AZTchgrlJvgyhP5ZHDMG4npG3de9pc270nd2BDRugRksTd8jGmdYuETZF4rImxfTORqGL61oU7Y4R9roIyicQ=[/tex],知 [tex=4.571x2.786]jcCMHflCR8OS9TosV6N5vMnCeR92vTTdgMhX7rWVb4DSPnC43DBqJs26IYMQexU71SKA5SFyULgJeLAtGb7BvA==[/tex]有右逆元,取[tex=2.357x1.286]lKFgOz+aBsdF6GdWbtvlbQ==[/tex],若有[tex=11.357x2.786]jcCMHflCR8OS9TosV6N5vN4XxHvFZ+KBaiD3478X+M2/+g33apA32PDodB2gY9WuOxQwUQCqwOmMN1z69x4EpSPTBP4C0Vac/AZsiAqLVDsdRsNK5Y2l3A7hsZYeMjUkN+WmFLDBdZoNpNzO+K8QnuwHnEvc2+T+D8XXS6NODLw=[/tex],则 [tex=2.786x1.214]Psa2pio+1aJNIYwldPSOJA==[/tex],[tex=2.714x1.214]my6MQPrxmfbDXZ/ni/8byA==[/tex],于是[tex=2.714x2.357]MkOvwayQXjbOJnl/ZcT74IvADdlmF0HDJdMf8oOb4jA=[/tex],[tex=2.214x1.214]UsMlkLUoKLGd8F3SMS20tw==[/tex]这就导出矛盾,故[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]不是群。因此,即使半群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有左幺元[tex=0.5x0.786]TBa/wxVah6IkxUQi/stEBg==[/tex],对[tex=2.571x1.071]T0RveP9X50AYgo23dfRGIQN+MvczpSHilpOxE8FviKU=[/tex],有右逆元,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]也不一定是群。

    举一反三

    内容

    • 0

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群. 假设对于任意的[tex=2.0x1.071]vWZfluFOSO3YQwS1PayuCw==[/tex]都有[tex=2.214x1.214]oha7wOCx8qXgzV+bBd/Ktw==[/tex], 证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是交换群. 

    • 1

      若群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的每一个元都适合方程 [tex=2.5x1.429]qS4Sd6aZmlUQ2tlbvI3G6g==[/tex] 那么 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群.

    • 2

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]假设[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex], 证明 :对任意整数[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 有[tex=5.071x2.429]IMMODsngCeQoQMBbAl6sIyludYJFRDrf5oFv7wHEzuKXxYxxYkuofnY8PklswQV2[/tex]

    • 3

      设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是群。证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群的充分必要条件是映射[p=align:center][tex=5.643x1.286]vYnB+TvcXPCyhuHqL1f9eiqPnWI+P41J9NXNd2auPeI=[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同构映射。

    • 4

      设 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群。证明: 对任意的[tex=2.214x1.214]0WCgI4jFSd+EieBjN1GRQw==[/tex] 集合[p=align:center][tex=10.286x1.571]t+aPDzqN/g0SVlY2BoF7BzQr9jAmILOKThunRonOjFykRD5WIsUJq1mzTAa8HZrPUrIYOjVoKoOZzSOM0yprSw==[/tex]是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群。