举一反三
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]与它的补图[tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex] 的边数分别为 [tex=1.286x1.0]fAfL1gz2FNNAp5ncosS6cA==[/tex] 和[tex=1.286x1.0]4LVsS7aUVlr169bVzOxOnw==[/tex], 试确定 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的阶数 [tex=0.929x0.786]lxK7J2TkjjIzWdTjZIk12Q==[/tex]
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶无向简单图, [tex=2.5x1.143]WHvOziYYJdz0BFGLmQB/8g==[/tex]且为奇数,证明 : [tex=0.786x1.0]AE39d9jt5lmaK/QknwwnQQ==[/tex] 与 [tex=0.786x1.143]3go8UcZXyYUwPOwYloc1nw==[/tex]中奇度顶点的个数相等.
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个具有乘法运算的非空有限集合。证明: 如果 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 满足结合律, 有左单位元,且右消去律成立,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是一个群。
- 证明:若 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是简单图,并且最多有一个 3 度顶点,则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 包含 [tex=1.357x1.214]EIN5AiZ59vmZ5JCP0wScx//qLmLytHexB/ZIuIU+wNY=[/tex] 的一 个剖分图。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是幺环,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,则在群环[tex=2.357x1.357]R4s8KmPtyolZZPRaTS8AdQ==[/tex]中有一子集,对于乘法为群且与[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]同构。
内容
- 0
令[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是全部实数对[tex=5.0x1.357]W7+mtqSlqtV17Wi3u/j7kwz9N+o+qENvjXCtpjJ9CnU=[/tex], 的集合.在 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 上定义乘法为[tex=3.786x1.357]/RmZ+lRtM+EjLLOb6yhDPA==[/tex][tex=10.357x1.357]W+NLSu4u5AfNXzaqaY1KMGXyIXAqEPi2mu+iWLpATAM=[/tex]验证 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是一个群.
- 1
设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,而[tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中任意一个固定的元素,证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 对新运算[tex=3.786x1.0]qdFcMdOFIU5BdUlQV9p1h1K21OvjpGCN05A+gCa5iXk=[/tex]也作成一个群.
- 2
设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何真子群都是循环群,试问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是循环群吗?
- 3
设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是由6个元素构成的循环群,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个生成元,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有______个子群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的生成元是______.
- 4
设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。